Volume 1, Issue 2 (October 2016)

Original research papers

Biomedical Engineering

DESIGN AND CHARACTERIZATION OF A DESK-TOP LASER PLASMA X-RAY SOURCE FOR RADIOBIOLOGY STUDIES

Daniel Adjei, Anna Wiechec, Przemyslaw Wachulak, Mesfin Getachew Ayele, Janusz Lekki, Wojciech M. Kwiatek, Andrzej Bartnik, Ladislav Pina, Henryk Fiedorowicz

Pages: 88-94

DOI: 10.21175/RadJ.2016.02.016

Received: 5 MAY 2015, Received revised: 22 MAY 2015, Accepted: 29 MAY 2015, Published Online: 18 OCT 2016

A compact desk-top laser-produced plasma source of soft X-rays for radiobiology research is presented. The source is based on a double-stream gas puff target and delivers nanosecond pulses of soft X-rays in the “water window” spectral range at a fluence of about 4.23´103 photon/µm2 per pulse on a sample placed inside the vacuum source chamber and about 2.60´102 photon/µm2 per pulse on a wet sample located outside the chamber in the He- environment. The source has been used to irradiate pBR322 plasmid DNA both in vacuum and the He-environment conditions. Single and double strand breaks were quantified by gel electrophoresis. The number of strand breaks increased with the increasing dose of the “water window” soft X-rays. The strand breaks of plasmid solution irradiated in helium condition may be associated with damage from water-free radicals.
  1. D.T. Goodhead and J. Thacker, “Inactivation and mutation of cultured mammalian cells by aluminium characteristic ultrasoft X-rays. I. Properties of aluminium X-rays and preliminary experiments with Chinese hamster cells,” Int. J. Radiat. Biol., Vol. 31, pp.541–559, 1977.
  2. D.T. Goodhead, J. Thacker, and R. Cox, “Effectiveness of 0.3 keV carbon ultrasoft X-rays for inactivation and mutation of cultured mammalian cells,” Int. J. Radiat. Biol., vol. 36, pp. 101–114, 1979.
  3. D.J. Brenner, R. P. Bird, M. Zaider, P. Goldhagen, P. J. Kliauga, and H. H. Rossi, “Inactivation of synchronized mammalian cells with low-energy X-rays—Results and significance,” Radiat. Res., vol. 110, pp. 413–427, 1987.
    DOI: 10.2307/3577008
  4. K.M. Prise, M. Folkard, S. Davies, and B. D. Michael, “Measurements of DNA damage and cell killing in Chinese hamster V79–4 cells irradiated with aluminum characteristic ultrasoft X- rays,” Radiat. Res., vol. 117, pp. 489–499, 1989.
    DOI: 10.2307/3577008
  5. D. T. Goodhead, “Soft X-ray radiobiology and synchrotron radiation,” in Synchrotron Radiation in the Biosciences, Eds. Chance, B. et al., Clarendon Press, Oxford, 1994, pp. 683-705.
  6. D. Frankenberg, H. Kuehn, M. Frankenberg-Schwager, W. Lenhard, and S. Beckonert, “0.3 keV carbon K ultrasoft X-rays are four times more effective than γ-rays when inducing oncogenic cell transformation at low doses,” Int. J. Radiat. Biol., vol. 68, pp. 593–601, 1995.
    DOI: 10.1080/09553009514551591
  7. C.S. Griffin,D. L. Stevens, and J. R K. Savage, “Ultrasoft 1.5 keV aluminum K X rays are efficient producers of complex chromosome exchange aberrations as revealed by fluorescence in situ hybridization,” Radiat. Res., vol. 146, pp. 144–150, 1996.
    DOI: 10.2307/3579586
  8. B.E. Nelms, et al., “A comparison of cytotoxicity after whole- or partial-cell irradiation with synchrotron-produced ultrasoft X rays,” Radiat. Res., vol. 150, pp.521–527, 1998.
    DOI: 10.2307/3579868
  9. M.A. Herve du Penhoat et al., “Lethal effect of carbon K-shell photoionizations in Chinese hamster V79 cell nuclei: Experimental method and theoretical analysis,” Radiat. Res., vol. 151, pp. 649–658, 1999.
    DOI: 10.2307/3580203
  10. M.N. Gould et al., “Radiobiological studies using synchrotron-produced ultrasoft X-rays,” J. Radiat. Res., vol. 40:Suppl., pp. 66–73, 1999.
    DOI: 10.1269/jrr.40.S66
  11. C.M. de Lara, M. A. Hill, T. J. Jenner, D. Papworth, and P. O'Neill, “Dependence of the yield of DNA double-strand breaks in Chinese hamster V79–4 cells on the photon energy of ultrasoft X rays,” Radiat. Res., vol. 155, pp. 440–448, 2001.
    DOI: 10.1667/0033-7587(2001)155[0440:DOTYOD]2.0.CO;2
  12. G. Schettino et al., “Low-dose studies of bystander cell killing with targeted soft X rays,” Radiat. Res., vol. 160, pp. 505–511, 2003.
    DOI: 10.1667/RR3060
  13. R.B Hawkins, “Mammalian Cell Killing by Ultrasoft X Rays and High-Energy Radiation: An Extension of the MK Model,” Radiat. Res., vol. 166, pp. 431–442, 2006.
    DOI: 10.1667/RR3594.1
  14. L. Chen, S. P. Jiang, L. B. Wan, X. D. Ma and M. F. Li, “Radiobiological investigations of soft X-rays near carbon, nitrogen, oxygen K-shell edges on Aspergillus oryzae spores,” Radiat. Prot. Dos., vol. 128(1), pp. 68–71, 2008.
    DOI: 10.1093/rpd/ncm308
  15. C. Oven et al., “An ultrasoft X-ray multi-microbeam irradiation system for studies of DNA damage responses by fixed- and live-cell fluorescence microscopy,” Eur. Biophys.J., vol. 38, pp. 721-728, 2009.
    DOI: 10.1007/s00249-009-0472-7
  16. T. Friedrich, M. Durante, and M. Scholz, “Modeling cell survival after irradiation with ultrasoft X rays using the giant loop binary lesion model,” Rad. Res., vol. 181, pp. 485-494, 2014.
    DOI: 10.1667/RR13518.1
  17. E. Alizadeh et a., “Thymidine decomposition induced by low-energy electrons and soft X rays under N2 and O2 atmospheres,” Rad. Res., vol. 181, pp. 629–640, 2014.
    DOI: 10.1667/RR13584.1
  18. I. C. E. Turcu et al., “Optimisation of an excimer laser-plasma soft X-ray source for applications in biophysics and medical physics,” Phys. Med., vol. 10(3), pp. 93-99, 1994.
  19. D. Batani et al., “Biosystem response to soft-X-rays irradiation: non-monotonic effects in the relevant biological parameters of yeast cells,” Il Nuovo Cim. D, vol. 18(5), pp. 657–662, 1996.
    DOI: 10.1007/bf02453256
  20. M. Nishikino et al., “Note: Application of laser produced plasma K alpha x-ray probe in radiation biology,” The Rev. Sci. Instrum., vol. 81(2), 026107, 2010.
    DOI: 10.1063/1.3302827
  21. H. Fiedorowicz, A. Bartnik, R. Jarocki, R. Rakowski, M. Szczurek, “Enhanced X-ray emission in the 1-keV range from a laser-irradiated gas puff target produced using the double-nozzle setup,” Appl. Phys. B, vol. 70, pp. 305-308, 2000.
    DOI: 10.1007/s003400050050
  22. P. W. Wachulak et al., "Water window" compact, table-top laser plasma soft X-ray sources based on a gas puff target,” Nucl. Instr. & Meth. Phys. Res. B, vol. 268, pp. 1692-1700, 2010.
    DOI: 10.1016/j.nimb.2010.02.002
  23. M. Davídková et al., “A high-power laser-driven source of sub-nanosecond soft X-ray pulses for single-shot radiobiology experiments,” Rad. Res., vol. 168, pp. 382-387, 2007.
    DOI: 10.1667/RR0676.1
  24. Optical Constants. Retrieved from: http://henke.lbl.gov/optical_constants/; Retrieved on: Aug. 19, 2016.
  25. D. Adjei et al., “Development of compact laser-produced plasma soft x-ray source for radiobiology experiments”, submitted for publication.
  26. A. Yokoya, R. Watanabe, and T. Hara, “Single- and double-strand breaks in solid pBR322 DNA induced by ultrasoft X-rays at photon energies of 388, 435 and 573 eV,” Rad. Res., vol. 40(2), pp. 145–158, 1999.
    DOI: 10.1269/jrr.40.145
  27. K. Hempel and E. Mildenberger , “Determination of G-values for single and double strand break induction in plasmid DNA using agarose gel electrophoresis and curve-fitting procedure,” Int. J. Radiat. Biol., vol. 52(1), pp. 125-138, 1987.
    DOI: 10.1080/09553008714551551
  28. S. J. McMahon and F. J. Currel, “A robust curve-fitting procedure for the analysis of plasmid DNA strand breaks data from gel electrophoresis,” Radiat. Res., vol. 175, pp. 797-805, 2011.
    DOI: 10.1667/RR2514.1
  29. A. Eschenbrenner, M. A. Herve Du Penhoat, A. Boissiere, G. Eot-Houllier, F. Abel, M.-F. Politis, A. Touati, E. Sage, and A. Chetioui, “Strand breaks induced in plasmid DNA by ultrasoft X-rays: influence of hydration and packing,” Int. J. Radiat. Biol., vol. 83(10), pp. 687–697, 2007.
    DOI: 10.1080/09553000701584106