Volume 1, Issue 3 (December 2016)

Invited review paper

Radiation Chemistry

CHEMICAL EVOLUTION: AN APPROACH FROM RADIATION CHEMISTRY

Alicia Negron-Mendoza, Sergio Ramos-Bernal, María Colin-Garcia, Alejandro Heredia

Pages: 159-164

DOI: 10.21175/RadJ.2016.03.030

Received: 5 MAR 2016, Received revised: 6 MAY 2016, Accepted: 12 MAY 2016, Published online: 26 DEC 2016

To explain the origin of life on Earth, a period in which the synthesis of bio-organic compounds was carried out from simple inorganic molecules under the influence of natural energy sources is assumed. However, many prebiotic reactions require the input of energy. Ionizing radiation is a very efficient source of energy and may have participated in prebiotic synthesis due to its unique qualities—e.g., its ubiquity, its energy deposition method, and the effectiveness of its reactions, via free radicals. The use of this source is substantiated by calculations of the energy available from the decay of radioactive elements with long half-lives. Cosmic radiation is an external energy source that also could have contributed to chemical evolution processes, especially in extraterrestrial environments. In the context of chemical evolution, radiation chemistry can be a very precise and useful tool to simulate the changes that take place in organic molecules that are exposed to high-energy radiation. This work highlights the importance of ionizing radiation in prebiotic synthesis, in both water and frozen solutions, which reproduces both terrestrial and extraterrestrial environments.
  1. A. Pross, R. Pascal, "The origin of life: what we know, what we can know and what we will never know," Open Biol, vol. 3, no. 3, 2013.
    DOI:10.1098/rsob.120190
  2. S. Sandford, P. Bera, T. Lee, C. Materese, M. Nuevo, "Photosynthesis and Photo-Stability of Nucleic Acids in Prebiotic Extraterrestrial Environments," in Top Curr Chem. Springer, Berlin Heidelberg, vol. 356, pp 123-164, 2014.
    DOI: 10.1007/128_2013_499
  3. A. Pross, "Causation and the origin of life. Metabolism or replication first?," Origins Life Evol B, vol. 34, no. 3, pp.307-321, 2004.
    DOI: 10.1023/B:ORIG.0000016446.51012.bc
  4. J. L. Bada, A. Lazcano, "Prebiotic Soup--Revisiting the Miller Experiment," Science, vol. 300, no. 5620, pp.745-746, 2003.
    DOI: 10.1126/science.1085145
  5. A. Negrón-Mendoza, L. Alfonso, "Herrera: a Mexican pioneer in the study of chemical evolution," J Biol Phys, vol. 20, no. 1, pp. 11-15, 1995.
    DOI: 10.1007/BF00700417
  6. G. Wächtershäuser, "Before enzymes and templates: theory of surface metabolism," Microbiol Rev, vol. 52, no. 4, pp.452, 1988.
  7. M. J. Russell, A. Hall, "The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front," J Geol Soc, vol. 154, no. 3, pp. 377-402, 1997.
    DOI:10.1144/gsjgs.154.3.0377
  8. Y. Amelin, A. N. Krot, I. D. Hutcheon, A. A. Ulyanov, "Lead Isotopic Ages of Chondrules and Calcium-Aluminum-Rich Inclusions," Science, vol. 297, no. 5587, pp.1678-1683, 2002.
    DOI: 10.1126/science.1073950
  9. J. Schopf, "Fossil evidence of Archaean life," Philos T of the Roy Soc B: Biological Sciences, vol. 361, no. 1470, pp. 869-885, 2006.
    DOI:10.1098/rstb.2006.1834
  10. H. Cleaves, J. Chalmers, A. Lazcano, S. Miller, J. Bada, "A Reassessment of Prebiotic Organic Synthesis in Neutral Planetary Atmospheres," Origins Life Evol B, vol. 38, no. 2, pp. 105-115, 2008.
    DOI: 10.1007/s11084-007-9120-3
  11. E. Galimov, "Redox evolution of the Earth caused by a multi-stage formation of its core," Earth and Planet Sci Lett, vol. 233, no. 3–4, pp. 263-276, 2005.
    DOI: 10.1016/j.epsl.2005.01.026
  12. A. Kröner, P. Layer, "Crust formation and plate motion in the early Archean," Science, vol. 256, no. 5062, pp.1405-1411, 1992.
  13. J. Schopf, "Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity of Life," Science, vol. 260, no. 5108, pp. 640-646, 1993.
  14. M. Schidlowski, "A 3,800-million-year isotopic record of life from carbon in sedimentary rocks," Nature, vol. 333, no. 6171, pp. 313-318, 1988.
    DOI: 10.1038/333313a0
  15. S. Miller, H. Urey, "Origin of life," Science, vol. 130, no. 3389, pp.1622-1624, 1959.
  16. I. Draganic, J. Adloff, "Radiation and radioactivity on earth and beyond," CRC press, 1993.
  17. I. Draganić, Z. Draganić, D. Altiparmakov, "Natural Nuclear Reactors and Ionizing Radiation in the Precambrian," in Developments in Precambrian Geology, Elsevier, vol 7, pp 175-190, 1983.
    DOI: 10.1016/S0166-2635(08)70247-0
  18. F. Mosqueira, G. Albarrán, A. Negrón-Mendoza, "A review of conditions affecting the radiolysis due to40K on nucleic acid bases and their derivatives adsorbed on clay minerals: Implications in prebiotic chemistry," Origins Life Evol B, vol. 26, no. 1, pp. 75-94, 1996.
    DOI: 10.1007/BF01808161
  19. "Treatise on Geochemistry," Edt. by K. Turekian and H. Holland, Elsevier Science, pp. 1-51, 195-235, 457-496, 2013.
  20. A. Negron-Mendoza, S. Ramos-Bernal, I. de Buen, "A Thermoluminescence Study of Bio-Organic Compounds Adsorbed in a Clay Mineral," Nucl Sci, IEEE Transactions on, vol. 57, no. 3, pp. 1223-1227, 2010.
    DOI: 10.1109/TNS.2009.2036176
  21. S. Miller, "A production of amino acids under possible primitive earth conditions," Science, vol. 117, no. 3046, pp. 528-529, 1953.
  22. S. Miller, C. Harold, "Organic Compound Synthes on the Primitive Eart," Science, vol. 130, pp. 251, 1959.
  23. M. Robertson, S. Miller, "An efficient prebiotic synthesis of cytosine and uracil," Nature, vol. 375, no. 6534, pp. 772-774, 1995.
    DOI: 10.1038/375772a0
  24. D. Ring, Y. Wolman, N. Friedmann, S. Miller, "Prebiotic synthesis of hydrophobic and protein amino acids," P Natl Acad Sci Usa, vol. 69, no. 3, pp. 765-768, 1972.
  25. R. Sanchez, J. Ferris, L. Orgel, "Cyanoacetylene in prebiotic synthesis," Science, vol. 154, no. 3750, pp. 784-785, 1966.
  26. W. Fuller, R. Sanchez, L. Orgel, "Studies in prebiotic synthesis," VII. J Mol Evol, vol. 1, no. 3, pp. 249-257, 1972.
  27. N. Gabel, C. Ponnamperuma, "Model for Origin of Monosaccharides," Nature, vol. 216, no. 5114, pp. 453-455, 1967.
    DOI: 10.1038/216455a0
  28. S. Miller, "The mechanism of synthesis of amino acids by electric discharges," Biochim Biophys Acta, vol. 23, no: 0, pp. 480-489, 1957.
    DOI: 10.1016/0006-3002(57)90366-9
  29. I. Draganic, Z. Draganic, "The radiation chemistry of water," Academic Press, New York, 1971.
  30. A. Negron-Mendoza, C. Ponnamperuma, "Formation of biologically relevant carboxylic acids during the gamma irradiation of acetic acid," Origins Life, vol. 7, no. 3, pp. 191-196, 1976.
    DOI: 10.1007/BF00926937
  31. G. Scholes, J. Weiss, "Chemical action of X-rays on nucleic acids and related substances in aqueous systems. 1. Degradation of nucleic acids, purines, pyrimidines, nucleosides and nucleotides by X-rays and by free radicals produced chemically," Biochem J Mar, vol. 53, no. 4, pp. 567–578, 1953.
  32. G. Hems, "Chemical Effects of Ionizing Radiation on Deoxyribonucleic Acid in Dilute Aqueous Solution," Nature, vol. 186, no. 4726, pp. 710-712, 1960.
    DOI: 10.1038/186710b0
  33. A. Negrón-Mendoza, Z. Draganić, R. Navarro-González, I. Draganić, "Aldehydes, Ketones, and Carboxylic Acids Formed Radiolytically in Aqueous Solutions of Cyanides and Simple Nitriles," Radiat Res, vol. 95, no. 2, pp. 248-261, 1983.
    DOI: 10.2307/3576253
  34. D. Dondi, D. Merli, L. Pretali, A. Buttafava, A. Faucitano, "Detailed analytical study of radiolysis products of simple organic compounds as a methodological approach to investigate prebiotic chemistry—Part 2," Radiat Phys Chem, vol. 80, no. 3, pp. 408-413, 2011.
    DOI: 10.1016/j.radphyschem.2010.09.010
  35. L. López-Esquivel Kranksith, A. Negrón-Mendoza, F. Mosqueira, S. Ramos-Bernal, "Radiation-induced reactions of amino acids adsorbed on solid surfaces," Nucl Instrum Meth A, vol. 619, no. 1–3, pp. 51-54, 2010.
    DOI: 10.1016/j.nima.2009.11.080
  36. A. Guzmán, A. Negrón-Mendoza, S. Ramos-Bernal, "Behavior of adenine in Na-montmorillonite exposed to gamma radiation: implications to chemical evolution studies," Cell Mol Biol (Noisy-le-grand), vol. 48, no. 5, pp.525-528, 2002.
  37. E. Aguilar-Ovando, A. Negron-Mendoza, "Radiation chemistry approach to the study of sedimentary microenvironments as models for the protection of bio-organic molecules on the early earth," J Radioanal Nucl Chem, vol. 286, no. 3, pp. 637-642, 2010.
    DOI: 10.1007/s10967-010-0734-y
  38. W. Zheng, D. Jewitt, R. Kaiser, "Formation of hydrogen, oxygen, and hydrogen peroxide in electron-irradiated crystalline water ice," Astrophys J, vol. 639, no. 1, pp. 534-548, 2006.
  39. W. Brown, L. Lanzerotti, J. Poate, W. Augustyniak,""Sputtering" of Ice by MeV Light Ions," Phys Rev Lett, vol. 40, no. 15, pp. 1027, 1978.
    DOI: 10.1103/PhysRevLett.40.1027
  40. W. Brown, W. Augustyniak, L. Lanzerotti, R. Johnson, R. Evatt, "Linear and Nonlinear Processes in the Erosion of H2O Ice by Fast Light Ions," Phys Rev Lett, vol. 45, no. 20, pp. 1632-1635, 1980.
    DOI: 10.1103/PhysRevLett.45.1632
  41. W. Brown et al., "Erosion and molecule formation in condensed gas films by electronic energy loss of fast ions," Nucl Instrum Methods, vol. 198, no. 1, pp. 1-8, 1982.
    DOI: 10.1016/0167-5087(82)90043-6
  42. G. Leto, G. Baratta, "Ly-α photon induced amorphization of Ic water ice at 16 Kelvin: Effects and quantitative comparison with ion irradiation," Astron Astrophys, vol. 397, no. 1, pp. 7-13, 2003.
    DOI: 10.1051/0004-6361:20021473
  43. O. Gomis, G. Leto, G. Strazzulla, "Hydrogen peroxide production by ion irradiation of thin water ice films," Astron Astrophys, vol. 420, no. 2, pp. 405-410, 2004.
    DOI: 10.1051/0004-6361:20041091
  44. R. Baragiola, M. Loeffler, U. Raut, R. Vidal, C. Wilson, "Laboratory studies of radiation effects in water ice in the outer solar system," Radiat Phys Chem, vol. 72, no. 2, pp. 187-191, 2005.
    DOI: 10.1016/j.radphyschem.2004.09.013
  45. O. Gomis, M. Satorre, G. Strazzulla, G. Leto, "Hydrogen peroxide formation by ion implantation in water ice and its relevance to the Galilean satellites," Planet Space Sci, vol. 52, no. 5, pp. 371-378, 2004. DOI: 10.1016/j.pss.2003.06.010
  46. A. Bar-Nun, J. Dror, E. Kochavi, D. Laufer, D. Kovetz, T. Owen, "Trapping and release of gases by water ice and implications for icy bodies," Origins Life Evol B, vol. 16, no. 3-4, pp. 220, 1986.
    DOI: 10.1007/BF02421991
  47. M. Shi, et al. " Sputtering of water ice surfaces and the production of extended neutral atmospheres," J Geophys Res Planets, vol. 100, no. E12, pp. 26387-26395, 1995.
    DOI: 10.1029/95JE03099
  48. R. Baragiola et al. "Sputtering of water ice," Nucl Instrum Meth B, vol. 209, no. 0, pp. 294-303, 2003.
    DOI: 10.1016/S0168-583X(02)02052-9
  49. M. Loeffler, U. Raut, R. Vidal, R. Baragiola, R. Carlson, "Synthesis of hydrogen peroxide in water ice by ion irradiation," Icarus, vol. 180, no. 1, pp. 265-273, 2006.
    DOI: 10.1016/j.icarus.2005.08.001
  50. B. Cooper, T. Tombrello, "Enhanced erosion of frozen H2O films by high energy 19f ions," Radiat. Eff. Defects Solids, vol. 80, no. 3-4, pp. 203-221, 1984.
    DOI: 10.1080/00337578408216464
  51. A. Matich, M. Bakker, D. Lennon, T. Quickenden, C. Freeman, "Oxygen luminescence from UV-excited water (H2O and D2O) ices," J Phys Chem-Us, vol. 97, no. 41, pp. 10539-10553, 1993.
    DOI: 10.1021/j100143a007
  52. P. Gerakines, W. Schutte, J. Greenberg, E. van Dishoeck, "The infrared band strengths of H2O, CO and CO2 in laboratory simulations of astrophysical ice mixtures," Astron Astrophys, vol. 296, pp. 810-818, 1995.
  53. G. Kimmel, T. Orlando, P. Cloutier, L. Sanche, Low-energy (5-40 eV) electron-stimulated desorption of atomic hydrogen and metastable emission from amorphous ice," J Phys Chem-Us B, vol. 101, no. 32, pp. 6301-6303, 1997.
    DOI: 10.1021/jp9632091
  54. M. Sieger, W. Simpson, T. Orlando, "Production of O2 on icy satellites by electronic excitation of low-temperature water ice," Nature, vol. 394, no. 6693, pp. 554-556, 1998.
    DOI: 10.1038/29015
  55. T. Orlando, M. Sieger, "The role of electron-stimulated production of O2 from water ice in the radiation processing of outer solar system surfaces," Surf Sci, vol. 528, no. 1, pp. 1-7, 2003.
    DOI: 10.1016/S0039-6028(02)02602-X
  56. X. Pan, A. Bass, J. Jay-Gerin, L. Sanche, "A mechanism for the production of hydrogen peroxide and the hydroperoxyl radical on icy satellites by low-energy electrons," Icarus, vol. 172, no. 2, pp. 521-525, 2004.
    DOI: 10.1016/j.icarus.2004.07.002
  57. J. Christiansen, D. Carpini, I. Tsong, "Sputtering of ices by keV ions," Nucl Instrum Meth B, vol. 15, no. 1, pp. 218-221, 1986.
    DOI: 10.1016/0168-583X(86)90289-2
  58. D. Bahr, M. Fama, R. Vidal, R. Baragiola, "Radiolysis of water ice in the outer solar system: Sputtering and trapping of radiation products," J Geophys Res-Planet, vol. 106 , no. E12, pp. 33285-33290, 2001.
    DOI: 10.1029/2000JE001324
  59. A. Bar-Nun, G. Herman, D. Laufer, M. Rappaport, "Trapping and release of gases by water ice and implications for icy bodies," Icarus, vol. 63, no. 3, pp. 317-332, 1985.
    DOI: 10.1016/0019-1035(85)90048-X
  60. M. Loeffler, G. Baratta, M. Palumbo, G. Strazzulla, R. Baragiola, "CO2 synthesis in solid CO by Lyman-alpha photons and 200 keV protons," Astron Astrophys, vol. 435, no. 2, pp. 587-594, 2005.
    DOI: 10.1051/0004-6361:20042256
  61. J. Brucato, M. Palumbo, G. Strazzulla, "Carbonic acid by ion implantation in water/carbon dioxide ice mixtures," Icarus, vol. 125, no. 1, pp. 135-144, 1997.
    DOI: 10.1006/icar.1996.5561
  62. M. Bernstein, L. Allamandola, S. Sandford, "Complex organics in laboratory simulations of interstellar/cometary ices," Adv Space Res, vol. 19, no. 7, pp. 991-998, 1997.
    DOI: 10.1016/S0273-1177(97)00340-2
  63. J. Llorc, "Hydrocarbon synthesis in cometary grains," Phys Chem Earth Pt C: Solar, Terrestrial & Planetary Science, vol. 24, no. 5, pp. 591-595, 1999.
    DOI: 10.1016/S1464-1917(99)00097-5
  64. R. Hudson, M. Moore, "Laboratory studies of the formation of methanol and other organic molecules by water+ carbon monoxide radiolysis: Relevance to comets, icy satellites, and interstellar ices," Icarus, vol. 140, no. 2, pp. 451-461, 1999.
    DOI: 10.1006/icar.1999.6144
  65. R. Hudson, M. Moore, "Hydrocarbon Radiation Chemistry in Ices of Cometary Relevance," Icarus, vol: 126, no. 1, pp. 233-235, 1997.
    DOI: 10.1006/icar.1997.5678
  66. R. Kaiser, O. Asvany, Y. Lee, "Crossed beam investigation of elementary reactions relevant to the formation of polycyclic aromatic hydrocarbon (PAH)-like molecules in extraterrestrial environments," Planet Space Sci, vol. 48, no. 5, pp. 483-492, 2000.
    DOI: 10.1016/S0032-0633(00)00021-0
  67. L. Allamandola, M. Bernstein, S. Sandford, R. Walker, "Evolution of interstellar ices," in Composition and Origin of Cometary Materials, Springer, pp. 219-232, 1999.
    DOI: 10.1016/0273-1177(95)00188-K
  68. K. Kobayashi et al. "Formation of amino acid precursors in cometary ice environments by cosmic radiation," Adv Space Res, vol. 16, no. 2, pp. 21-26, 1995.
    DOI: 10.1016/0273-1177(95)00188-K
  69. M. Colín-García, A. Negrón-Mendoza, S. Ramos-Bernal, "Organics Produced by Irradiation of Frozen and Liquid HCN Solutions: Implications for Chemical Evolution Studies," Astrobiology, vol. 9, no. 3, pp. 279-288, 2009.
    DOI: 10.1089/ast.2006.0117
  70. M. Colín-García, A. Negrón-Mendoza, S. Ramos-Bernal, E. Chacón, "Irradiation of Icy Cometary Analogs: Its Relevance in Reference to Chemical Evolution and the Origin of Life," in From Fossils to Astrobiology, Springer, Netherlands, pp. 425-442, 2008