Volume 2, Issue 1

Original research papers

Environmental Chemistry


Valbonë Mehmeti, Kurt Kalcher, Fetah Podvorica, Avni Berisha

Pages: 41-45

DOI: 10.21175/RadJ.2017.01.009

Received: 27 FEB 2016, Received revised: 19 APR 2016, Accepted: 25 MAY 2016, Published online: 20 APR 2017

The corrosion behavior of iron in 0.1M aqueous sulfuric acid medium has been studied in the presence and absence of: 4-methyl-4H-1,2,4-triazole-3-thiol and 2-mercaptonicotinic acid. Potentiodynamic measurements did not show any shift of corrosion potential toward a more negative potential indicating that these compounds mostly act as mixed inhibitors due to their adsorption on the iron surface. The adsorbed film of these molecules hinders the transport of the metal ions from the metal to the solution and also retards the hydrogen evolution reaction by acting as a physical barrier. The molecules were also studied with the density functional theory (DFT), using the B3LYP functional in order to determine the relationship between the molecular structure and the corrosion inhibition behavior.
  1. M. Finšgar and J. Jackson, “Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: A review,” Corros. Sci., vol. 86, pp. 17–41, Sep. 2014.
    DOI: 10.1016/j.corsci.2014.04.044
  2. B. Sanyal, “Organic compounds as corrosion inhibitors in different environments — A review,” Prog. Org. Coatings, vol. 9, no. 2, pp. 165–236, Aug. 1981.
    DOI: 10.1016/0033-0655(81)80009-X
  3. A. Berisha, F. Podvorica, V. Mehmeti, F. Syla, and D. Vataj, “Theoretical and experimental studies of the corrosion behavior of some thiazole derivatives toward mild steel in sulfuric acid media,” Macedonian Journal of Chemistry and Chemical Engineering, vol. 34, no. 2. pp. 287–294, Nov. 2015.
    DOI: 10.20450/mjcce.2015.576
  4. F. Mohsenifar, H. Jafari, and K. Sayin, “Investigation of Thermodynamic Parameters for Steel Corrosion in Acidic Solution in the Presence of N,N′-Bis(phloroacetophenone)-1,2 propanediamine,” J. Bio- Tribo-Corrosion, vol. 2, no. 1, p. 1, Mar. 2016.
    DOI: 10.1007/s40735-015-0031-y
  5. S. Tamil Selvi, V. Raman, and N. Rajendran, “Corrosion inhibition of mild steel by benzotriazole derivatives in acidic medium,” J. Appl. Electrochem., vol. 33, no. 12, pp. 1175–1182, Dec. 2003.
    DOI: 10.1023/B:JACH.0000003852.38068.3f
  6. S. Fouda and A. S. Ellithy, “Inhibition effect of 4-phenylthiazole derivatives on corrosion of 304L stainless steel in HCl solution,” Corros. Sci., vol. 51, no. 4, pp. 868–875, Apr. 2009.
    DOI: 10.1016/j.corsci.2009.01.011
  7. N. O. Obi-Egbedi, I. B. Obot, and M. I. El-Khaiary, “Quantum chemical investigation and statistical analysis of the relationship between corrosion inhibition efficiency and molecular structure of xanthene and its derivatives on mild steel in sulphuric acid,” J. Mol. Struct., vol. 1002, no. 1–3, pp. 86–96, Sep. 2011.
    DOI: 10.1016/j.molstruc.2011.07.003
  8. W. J. van Ooij, D. Zhu, M. Stacy, A. Seth, T. Mugada, J. Gandhi, and P. Puomi, “Corrosion protection properties of organofunctional silanes — An overview,” Tsinghua Sci. Technol., vol. 10, no. 6, pp. 639–664, Dec. 2005.
    DOI: 10.1016/S1007-0214(05)70134-6
  9. V. Palanivel, Y. Huang, and W. J. van Ooij, “Effects of addition of corrosion inhibitors to silane films on the performance of AA2024-T3 in a 0.5M NaCl solution,” Prog. Org. Coatings, vol. 53, no. 2, pp. 153–168, Jun. 2005.
    DOI: 10.1016/j.porgcoat.2003.07.008
  10. M. Kosian, M. M. J. Smulders, and H. Zuilhof, “Structure and Long-Term Stability of Alkylphosphonic Acid Monolayers on SS316L Stainless Steel,” Langmuir, vol. 32, no. 4, pp. 1047–57, Feb. 2016.
    DOI: 10.1021/acs.langmuir.5b04217
    PMid: 26771302
  11. T. Abohalkuma and J. Telegdi, “Corrosion protection of carbon steel by special phosphonic acid nano-layers,” Mater. Corros., vol. 66, no. 12, pp. 1382–1390, Dec. 2015.
    DOI: 10.1002/maco.201508304
  12. H. N. Shubha, T. V Venkatesha, K. Vathsala, M. K. Pavitra, and M. K. P. Kumar, “Preparation of self assembled sodium oleate monolayer on mild steel and its corrosion inhibition behavior in saline water,” ACS Appl. Mater. Interfaces, vol. 5, no. 21, pp. 10738–44, Nov. 2013.
    DOI: 10.1021/am4028857
    PMid: 24144468
  13. F. I. Podvorica, C. Combellas, M. Delamar, F. Kanoufi, and J. Pinson, “Spontaneous grafting of iron surfaces by reduction of aryldiazonium salts in acidic water. Applications to the inhibition of iron corrosion,” in Passivation of Metals and Semiconductors, and Properties of Thin Oxide Layers, eds. P. Marcus, V. Maurice, Amsterdam, The Netherlands: Elsevier, 2006. pp. 697-702.
    DOI: 10.1016/B978-044452224-5/50106-2
  14. A. Berisha, M. Chehimi, J. Pinson, and F. Podvorica, “Electrode surface modification using diazonium salts,” in Electroanalytical Chemistry: A Series of Advances: Volume 26, eds. A. J. Bard, C. G. Zoski, CRC Press, 2015, pp. 115–224.
    DOI: 10.1201/b19196-4
  15. A. Berisha, C. Combellas, F. Kanoufi, J. Pinson, and F. I. Podvorica, “Physisorption vs grafting of aryldiazonium salts onto iron: A corrosion study,” Electrochim. Acta, vol. 56, no. 28, pp. 10762–10766, Dec. 2011.
    DOI: 10.1016/j.electacta.2011.01.049
  16. I. B. Obot, D. D. Macdonald, and Z. M. Gasem, “Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: An overview,” Corros. Sci., vol. 99, pp. 1–30, Jan. 2015.
    DOI: 10.1016/j.corsci.2015.01.037
  17. P. Geerlings, F. De Proft, and W. Langenaeker, “Conceptual Density Functional Theory,” Chem. Rev., vol. 103, no. 5, pp. 1793–1874, May 2003.
    DOI: 10.1021/cr990029p
    PMid: 12744694
  18. G. Gece, “The use of quantum chemical methods in corrosion inhibitor studies,” Corros. Sci., vol. 50, no. 11, pp. 2981–2992, Nov. 2008.
    DOI: 10.1016/j.corsci.2008.08.043
  19. L. Larabi, Y. Harek, M. Traisnel, and A. Mansri, “Synergistic influence of poly(4-Vinylpyridine) and potassium iodide on inhibition of corrosion of mild steel in 1M HCl,” J. Appl. Electrochem., vol. 34, no. 8, pp. 833–839, Aug. 2004.
    DOI: 10.1023/B:JACH.0000035609.09564.e6
  20. F. Mansfeld, M. W. Kendig, and S. Tsai, “Recording and analysis of AC impedance data for corrosion studies,” Corrosion, vol. 38, no. 11, pp. 570–580, Mar. 1982.
    DOI: 10.5006/1.3577304
  21. G. Quartarone, L. Bonaldo, and C. Tortato, “Inhibitive action of indole-5-carboxylic acid towards corrosion of mild steel in deaerated 0.5M sulfuric acid solutions,” Appl. Surf. Sci., vol. 252, no. 23, pp. 8251–8257, Sep. 2006.
    DOI: 10.1016/j.apsusc.2005.10.051
  22. A. Yurt, S. Ulutas, and H. Dal, “Electrochemical and theoretical investigation on the corrosion of aluminium in acidic solution containing some Schiff bases,” Appl. Surf. Sci., vol. 253, no. 2, pp. 919–925, Nov. 2006.
    DOI: 10.1016/j.apsusc.2006.01.026