Volume 2, Issue 2

Original research papers

Radiation Effects


O. Shpotyuk, M. Shpotyuk, S. Ubizskii

Pages: 94-100

DOI: 10.21175/RadJ.2017.02.021

Received: 14 FEB 2017, Received revised: 26 APR 2017, Accepted: 3 JUL 2017, Published online: 28 OCT 2017

A variety of methodological resolutions suitable to identify unambiguously radiation-induced effects in chalcogenide glassy semiconductors is analyzed in details. The radiation-optical effects in chalcogenide glasses are comprehensively considered as resulting from both intrinsic and impurity-related redistribution of covalent chemical bonds known as destruction-polymerization transformations. Two types of experimental measuring protocols are utilized to study the radiation-induced effects within ex-situ direct or in-situ backward chronology, the latter being more adequate for correct testing of competitive inputs from both channels of destruction-polymerization transformations. A critical assessment is given on misleading speculations of some authors ignoring intrinsic radiation-structural transformations in glassy As2S3 in view of accompanying oxidation and thermally-induced physical-ageing processes. In final, the As2S3 glass is nominated to be the best model object among a wide group of chalcogenide glassy semiconductors revealing the highest sensitivity to radiation-induced metastability.
  1. O. I. Shpotyuk, “Radiation-induced effects in chalcogenide vitreous semiconductors,” in Semiconducting Chalcogenide Glass I. Glass Formation, Structure, and Stimulated Transformations in Chalcogenide Glasses, R. Fairman, B. Ushkov, Eds., Cambridge (MA), USA: Elsevier Academic Press, 2004, ch. 6, pp. 215 – 260.
    DOI: 10.1016/S0080-8784(04)80048-6
  2. O. Shpotyuk, R. Golovchak, A. Kozdras, “Physical ageing of chalcogenide Glasses,” in Chalcogenide Glasses: Preparation, Properties and Applications, J. L. Adam, X. Zhang, Eds., Sawston, UK: Woodhead Publishing, 2013, ch. 13, pp. 209 – 264.
    DOI: 10.1533/9780857093561.1.209
  3. O. I. Shpotyuk et al., “Compositional trends in radiation-optical properties of chalcogenide glasses,” J. Optoelectron. Adv. Mater., vol. 4, no. 3, pp. 751 – 762, Sep. 2002.
    Retrieved from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=
    Retrieved on: Jan. 15, 2017
  4. O. I. Shpotyuk, “Induced effects in chalcogenide glassy semiconductors and destruction-polymerization transformations concept,” Latv. J. Phys. Techn. Sci., vol. 4, pp. 32 – 43, 1993.
  5. O. Shpotyuk et al., “Destruction-polymerization transformations as a source of radiation-induced extended defects in chalcogenide glassy semiconductors,” Phys. Stat. Sol. C, vol. 10, no. 1, pp. 125 – 128, Jan. 2013.
    DOI: 10.1002/pssc.201200407
  6. Ya. Shpotyuk et al., “Radiation-induced effects in chalcogenide amorphous semiconductors: On the role of destruction-polymerization transformations,” J. Non-Crystr. Sol., vol. 377, pp. 46 – 48, Oct. 2013.
    DOI: 10.1016/j.jnoncrysol.2013.01.054
  7. M. V. Shpotyuk et al., “On the origin of radiation-induced metastability in vitreous chalcogenide semiconductors: The role of intrinsic and impurity-related destruction-polymerization transformations,” Semicond. Phys. Quant. Electron. Optoelectron., vol. 18, no. 1, pp. 90 – 96, Feb. 2015.
    DOI: 10.15407/spqeo18.01.090
  8. O. I. Shpotyuk, “Mechanism of radiation-structural transformations in amorphous As2S3,Rad. Effects and Defects in Solids, vol. 132, no. 4, pp. 393 – 396, 1994.
    DOI: 10.1080/10420159408219992
  9. O. I. Shpotyuk et al., “Radiation-stimulated processes in vitreous arsenic trisulphide,” J. Non-Cryst. Solids, vol. 176, no. 1, pp. 45 – 50, Oct. 1994.
    DOI: 10.1016/0022-3093(94)90209-7
  10. D. Zhao et al., “Gamma-ray-induced multi-effect on properties of chalcogenide glasses,” J. Am. Ceram. Soc., vol. 89, no. 11, pp. 3582 – 3584, Nov. 2006.
    DOI: 10.1111/j.1551-2916.2006.01268.x
  11. F. Xia et al., “Gamma ray irradiation induced optical band gap variations in chalcogenide glasses,” Nucl. Instr. Meth. Phys. Res. B, vol. 234, no. 4, pp. 525 – 532, Jul. 2005.
    DOI: 10.1016/j.nimb.2005.02.019
  12. F. Xia et al., “g-ray irradiation induced multiple effects on Ge-as-Sde chalcogenide glasses,” J. Non-Cryst. Solids,vol. 354, no. 12-13, pp. 1365 – 1368, Feb. 2008.
    DOI: 10.1016/j.noncrystsol.2006.11.049
  13. W. Shen et al., “Gamma-ray irradiation resistance of silver doped GeS2-Ga2S3-AgI chalcogenide glasses,” Nucl. Instr. Meth. Phys. Res. B,vol. 329, pp. 48 – 51, Jun. 2014.
    DOI: 10.1016/j.nimb.2014.02.119
  14. W. Shen et al., “Controllable gamma-ray sensitivity of Ag-doped and/or AgI-modified Ge-Ga-S glasses,” Nucl. Instr. Meth. Phys. Res. B,vol. 280, pp. 36 – 38, Jun. 2012.
    DOI: 10.1016/j.nimb.2012.02.034
  15. O. A. Lafi et al., “The effect of gamma irradiation on glass transition temperature and thermal stability of Se96Sn4 chalcogenide glass,” Rad. Phys. Chem.,vol. 79, no. 1, pp. 104 - 108, Jan. 2010.
    DOI: 10.1016/j.radphyschem.2009.08.005
  16. M. A. Al-Ewaisi et al., “Effect of gamma irradiation on some electrical properties and optical band gap of bulk Se92Sn8 chalcogenide glass,” Physica B,vol. 405, no. 12, pp. 2643 – 2647, Jun. 2010.
    DOI: 10.1016/j.physb.2010.03.045
  17. S. K. Troipathi, “Irradiation induced changes in semiconducting thin films,” Defects Diffusion Forum,vol. 341, pp. 181 – 219, Jul. 2013.
    DOI: 10.4028/www.scientific.net/DDF.341.181
  18. S. M. El-Sayed, “Electron beam and gamma irradiation effects on amorphous chalcogenide SbSe2.5 films,” Nucl. Instr. Meth. Phys. Res. B,vol. 225, no. 4, pp. 535 – 543, Oct. 2004.
    DOI: 10.1016/j.nimb.2004.05.033
  19. D. Sarkar et al., “Influence of electron beam irradiation on structural and optical properties of thermally evaporated GeTe thin films,” Rad. Phys. Chem.,vol. 98, pp. 64 – 68, May 2014.
    DOI: 10.1016/j.radphyschem.2014.01.016
  20. M. R. Balboul, “Optical effects induced by gamma and UV irradiation in chalcogenide glass,” Rad. Measurements,vol. 43, no. 8, pp. 1360 – 1364, Sep. 2008.
    DOI: 10.1016/j.radmeas.2008.03.007
  21. M. R. Balboul et al., “Effect of Co60 g-irradiation on the optical properties of thin films from the system GeSe3-Sb2Se3-ZnSe,” Rad. Phys. Chem.,vol. 81, no. 12, pp. 1848 – 1855, Dec. 2012.
    DOI: 10.1016/j.radphyschem.2012.08.007
  22. G. A. N. Amin et al., “Optical response of gamma irradiated arsenic selenide thin films,” Mater. Sci. Semicond. Processing,vol. 15, no. 4, pp. 455 – 459, Aug. 2012.
    DOI: 10.1016/j.mssp.2012.03.017
  23. G. A. N. Amin et al., “Study of gamma-radiation-induced optical effects in Ge-Se-Cd for possible industrial dosimetric applications,” Rad. Phys. Chem.,vol. 72, no. 4, pp. 419 – 422, Mar. 2005.
    DOI: 10.1016/j.radphyschem.2004.03.013
  24. M. Shpotyuk et al., “Compositional trends of g-induced optical changes observed in chalcogenide glasses of binary As-S system,” J. Non-Cryst. Solids, vol. 386, pp. 95 – 99, Feb. 2014.
    DOI: 10.1016/j.jnoncrysol.2013.12.001
  25. O. Shpotyuk et al., “Structural-relaxation phenomena in As-S glasses as probed by combuned PAL/DBAR technique,” Mat. Chem. Phys., vol. 155, pp. 76 – 82, Apr. 2015.
    DOI: 10.1016/j.matchemphys.2015.02.001
  26. M. Shpotyuk et al., “FSDP-related correlations in g-irradiated chalcogenide semiconductor glasses: The case of glassy arsenic trisulphide g-As2S3 revised,” J. Phys. Chem. Sol., vol. 74, no. 12, pp. 1721 – 1725, Dec. 2013.
    DOI: 10.1016/j.jpcs.2013.06.016
  27. M. Shpotyuk et al., “Surface oxidation in glassy arsenic trisulphide induced by high-energy g-irradiation,” Rad. Phys. Chem., vol. 97, pp. 341 – 345, Apr. 2014.
    DOI: 10.1016/j.radphyschem.2013.12.021
  28. V. Balitska et al., “Post-irradiation relaxation in vitreous arsenic/antimony trisulphides,” J. Non-Cryst. Solids, vol. 357, no. 2, pp. 487 – 489, Jan. 2011.
    DOI: 10.1016/j.jnoncrysol.2010.06.052
  29. J. S. Berkes et al., “Photodecomposition of amorphous As2Se3 and As2S3,” J. Appl. Phys., vol. 42, pp. 4908 – 4916, 1971.
    DOI: 10.1063/1.1659873
  30. S. A. Keneman et al., “Evaporated films of arsenic trisulfide: Physical model of effects of light exposure and heat cycling,” J. Appl. Phys., vol. 49, pp. 4663 – 4673, 1978.
    DOI: 10.1063/1.325555
  31. M. Shpotyuk et al., “Surface oxidation in glassy arsenic trisulphide induced by high-energy g-irradiation,” Rad. Phys. Chem., vol. 97, pp. 341 – 345, Apr. 2014.
    DOI: 0.1016/j.radphyschem.2013.12.021
  32. J. S. Sanghera et al., “Effect of scattering centers on the optical loss of As2S3 glass fibers in the infrared,” J. Appl. Phys., vol. 75, no. 10, pp. 4885 – 4891, Jan. 1994.
    DOI: 10.1063/1.355774
  33. S. Lovas et al., “The room temperature visible photoluminescence in g-As2S3 and Ge-based glasses,” Sci. Bull. Uzhgorod Univ. Ser. Fiz., vol. 34, pp. 54 – 58, 2013.
    Retrieved from: http://dspace.uzhnu.edu.ua/jspui/handle/lib/2625
    Retrieved on: Jan. 10, 2017
  34. T. S. Kavetskyy and A. L. Stepanov, “Effects of gamma-irradiation and ion implantation in chalcogenide glasses,” in Glass Nanocomposites: Synthesis, Properties and Applications, B. Karmakar, K. Rademann, A. L. Stepanov, Eds., Cambridge (MA), USA: Elsevier Acad. Press, 2016, ch. 14, pp. 341 – 358
    DOI: 10.1016/B978-0-323-39309-6.00014-6
  35. T. S. Kavetskyy, “Long-term radiation-induced optical darkening effects in chalcogenide glasses,” Semicond. Phys. Quantum Electron. Optoelectron., vol. 19, no. 4, pp. 395 – 398, 2016.
    DOI: 10.15407/spqeo19.04.395
  36. O. I. Shpotyuk et al., “Radiation optical effects in As2S3-GeS2 semiconducting glasses,” Phys. Chem. Glasses, vol. 42, no. 2, pp. 95 – 98, Apr. 2001.
  37. E. Skordeva et al., “g-induced changes in Ge-As-S glasses,” J. Optoelectron. Adv. Mater., vol. 2, pp. 259 – 266, 2000.
    Retrieved from: https://www.researchgate.net/publication/242238293G-Induced_Changes_in_Ge-As-S_Glasses
    Retrieved on: Jan. 10, 2017
  38. V. Balitska et al., “On the instability effects in radiation-sensitive chalcogenide glasses,” Rad. Measurements, vol. 42, no. 4-5, pp. 941 – 943, Apr-May 2007.
    DOI: 10.1016/j.radmeas.2007.02.045
  39. V. Balitska et al., “Dynamic radiation-induced effects in chalcogenide vitreous compounds,” J. Non-Cryst. Solids, vol. 287, no. 1-3, pp. 216 – 221, Jul. 2001.
    DOI: 10.1016/S0022-3093(01)00635-4