Volume 2, Issue 2

Original research papers

Radiation Detectors


Dovile Meskauskaite, Eugenijus Gaubas, Tomas Ceponis, Jevgenij Pavlov, Vytautas Rumbauskas

Pages: 118-123

DOI: 10.21175/RadJ.2017.02.025

Received: 10 FEB 2017, Received revised: 27 APR 2017, Accepted: 20 JUN 2017, Published online: 28 OCT 2017

High response speed sensors made of thin GaN-based structures can be important for the optical readout of the radiation signals in harsh radiation environment at hadron accelerator facilities. In this work, the metal-semiconductor-metal structure sensors formed on the MOCVD grown GaN heterostructures have been studied. The proton-induced luminescence (PI-L) and the BELIV (barrier evaluation by linearly increasing voltage) transients have simultaneously been recorded during 1.6 MeV proton irradiation emitted by a Tandetron type accelerator. The PI-L and BELIV measurements allowed for tracing the evolution of the parameters of recombination. The radiation damage on GaN-based sensors has been examined by capacitance-voltage (C-V) and deep-level transient spectroscopy (DLTS) methods. The dominant radiation defects introduced by 1.6 MeV proton beam have been unveiled.
  1. S. Fujita, “Wide-bandgap semiconductor materials: For their full bloom,” Jpn. J. Appl. Phys., vol. 54, no. 3. p. 30101, Feb. 2015.
    DOI: 10.7567/JJAP.54.030101
  2. S. J. Pearton et al., “GaN-based diodes and transistors for chemical, gas, biological and pressure sensing,” J. Phys. Condens. Matter, vol. 16, no. 29, pp. R961–R994, Jul. 2004.
    DOI: 10.1088/0953-8984/16/29/R02
  3. M. Sugiura et al., “Study of radiation detection properties of GaN pn diode,” Jpn. J. Appl. Phys., vol. 55, no. 5S, p. 05FJ02, Mar. 2016.
    DOI: 10.7567/JJAP.55.05FJ02
  4. M. Moll, “Radiation tolerant semiconductor sensors for tracking detectors,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 565, no. 1, pp. 202–211, Sep. 2006.
    DOI: 10.1016/j.nima.2006.05.001
  5. P. J. Sellin and J. Vaitkus, “New materials for radiation hard semiconductor dectectors,” Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., vol. 557, no. 2, pp. 479–489, Feb. 2006.
    DOI: 10.1016/j.nima.2005.10.128
  6. E. Gaubas et al., “Correlative analysis of the in situ changes of carrier decay and proton induced photoluminescence characteristics in chemical vapor deposition grown GaN,” Appl. Phys. Lett., vol. 104, no. 6, p. 62104, Jan. 2014.
    DOI: 10.1063/1.4865499
  7. P. Pittet et al., “PL characterization of GaN scintillator for radioluminescence-based dosimetry,” Opt. Mater. (Amst)., vol. 31, no. 10, pp. 1421–1424, Aug. 2009.
    DOI: 10.1016/j.optmat.2008.09.012
  8. Xeon 1 Power Blue LED OSB4XNE1E1E VER C.3, OptoSupply International, Hong Kong, China.
    Retrieved from: http://www.optosupply.com/uppic/201686103526.pdf
    Retrieved on: Apr. 26, 2017.
  9. E. Gaubas, T. Ceponis and J. V. Vaitkus, Pulsed capacitance technique for evaluation of barrier structures. Saarbrucken-Berlin: LAMBERT Academic Publishing, 2013.
  10. J. F. Ziegler, M. D. Ziegler and J. P. Biersack, “SRIM - The stopping and range of ions in matter (2010),” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 268, no. 11–12, pp. 1818–1823, Jun. 2010.
    DOI: 10.1016/j.nimb.2010.02.091
  11. E. Gaubas, A. Uleckas, J. Vaitkus, J. Raisanen and P. Tikkanen, “Instrumentation for the in situ control of carrier recombination characteristics during irradiation by protons,” Rev. Sci. Instrum., vol. 81, no. 5, p. 53303, May 2010.
    DOI: 10.1063/1.3429944
    PMid: 20515132
  12. D. V. Lang, “Deep-level transient spectroscopy: A new method to characterize traps in semiconductors,” J. Appl. Phys., vol. 45, no. 7, pp. 3023–3032, 1974.
    DOI: 10.1063/1.1663719
  13. FT 1030 Deep-Level Transient Spectroscopy System, PhysTech GmbH, Moosburg, Germany.
    Retrieved from: http://www.phystech.de/products/dlts/dlts.htm
    Retrieved on: Apr. 26, 2017.
  14. E. Gaubas et al., “Correlated evolution of barrier capacitance charging, generation, and drift currents and of carrier lifetime in Si structures during 25 MeV neutrons irradiation,” Appl. Phys. Lett., vol. 101, no. 23, p. 232104, Dec. 2012.
    DOI: 10.1063/1.4769370
  15. E. Gaubas, I. Brytavskyi, T. Ceponis, V. Kalendra and A. Tekorius, “Spectroscopy of deep traps in Cu2S-CdS junction structures,” Materials, vol. 5, no. 12, pp. 2597–2608, Dec. 2012.
    DOI: 10.3390/ma5122597
  16. M. A. Reshchikov, H. Morkoç, S. S. Park and K. Y. Lee, “Two charge states of dominant acceptor in unintentionally doped GaN: Evidence from photoluminescence study,” Appl. Phys. Lett., vol. 81, no. 26, p. 4970, Dec. 2002.
    DOI: 10.1063/1.1531227
  17. J. Rodrigues et al., “Influence of neutron irradiation and annealing on the optical properties of GaN,” Phys. Status Solidi C, vol. 9, no. 3-4, pp. 1016-1020, Feb. 2012.
    DOI: 10.1002/pssc.201100200
  18. M. A. Reshchikov, D. O. Demchenko, A. Usikov, H. Helava and Y. Makarov, “Carbon defects as sources of the green and yellow luminescence bands in undoped GaN,” Phys. Rev. B, vol. 90, no. 23, p. 235203, Dec. 2014.
    DOI: 10.1103/PhysRevB.90.235203
  19. J. L. Lyons, A. Janotti and C. G. Van de Walle, “Carbon impurities and the yellow luminescence in GaN,” Appl. Phys. Lett., vol. 97, no. 15, p. 152108, Oct. 2010.
    DOI: 10.1063/1.3492841
  20. M. A. Reshchikov and H. Morkoç, “Luminescence properties of defects in GaN,” J. Appl. Phys., vol. 97, no. 6, p. 61301, Mar. 2005.
    DOI: 10.1063/1.1868059
  21. N. Nepal, M. L. Nakarmi, J. Y. Lin and H. X. Jiang, “Photoluminescence studies of impurity transitions in AlGaN alloys,” Appl. Phys. Lett., vol. 89, no. 9, p. 92107, Aug. 2006.
    DOI: 10.1063/1.2337856
  22. K. H. Lee and J. H. Crawford, “Luminescence of the F center in sapphire,” Phys. Rev. B, vol. 19, no. 6, pp. 3217–3221, Mar. 1979.
    DOI: 10.1103/PhysRevB.19.3217
  23. A. Castaldini, A. Cavallini, A. Castaldini and L. Polenta, “Deep levels and irradiation effects in n-GaN,” J. Phys. Condens. Matter, vol. 12, no. 49, pp. 10161–10167, 2000.
    DOI: 10.1088/0953-8984/12/49/315
  24. A. Y. Polyakov et al., “Radiation effects in GaN materials and devices,” J. Mater. Chem. C, vol. 1, no. 5, pp. 877–887, 2013.
    DOI: 10.1039/C2TC00039C
  25. S. J. Pearton, R. Deist, F. Ren, L. Liu, A. Y. Polyakov and J. Kim, “Review of radiation damage in GaN-based materials and devices,” J. Vac. Sci. Technol. A, vol. 31, no. 5, p. 50801, Apr. 2013.
    DOI: 10.1116/1.4799504
  26. A. Hierro et al., “Optically and thermally detected deep levels in n -type Schottky and p+-n GaN diodes,” Appl. Phys. Lett., vol. 76, no. 21, pp. 3064–3066, May 2000.
    DOI: 10.1063/1.126580
  27. E. Patrick et al., “Modeling proton irradiation in AlGaN/GaN HEMTs: understanding the increase of critical voltage,” IEEE Trans. Nucl. Sci., vol. 60, no. 6, pp. 4103–4108, Dec. 2013.
    DOI: 10.1109/TNS.2013.2286115
  28. B. D. Weaver et al., “On the radiation tolerance of AlGaN/GaN HEMTs,” ECS J. Solid State Sci. Technol., vol. 5, no. 7, pp. Q208–Q212, Jun. 2016.
    DOI: 10.1149/2.0281607jss
  29. E. E. Patrick, M. Choudhury, F. Ren, S. J. Pearton and M. E. Law, “Simulation of radiation effects in AlGaN/GaN HEMTs,” ECS J. Solid State Sci. Technol., vol. 4, no. 3, pp. Q21–Q25, Jan. 2015.
    DOI: 10.1149/2.0181503jss