Volume 3, Issue 1

Original research papers

Radiation Physics


Vasyl Gritsyna, Yurij Kazarinov

Pages: 7-12

DOI: 10.21175/RadJ.2018.01.002

Received: 26 MAR 2017, Received revised: 9 JUN 2017, Accepted: 5 JUL 2017, Published online: 2 APR 2018

The use of the radio-luminescence (RL) method for radiation-induced processes in magnesium aluminates spinel crystals (MgO∙nAl2O3) of different composition doped with transition metals (Mn, Cr, and Fe) was investigated. The RL spectra demonstrate bands related to the intrinsic defects, such as anti-site defects (263 nm) and F-type centers (~360 nm). Transition metal (TM) ions substituting the crystal-forming ions in the tetra- and octahedral sites show the emission due to electron transitions in doped ions, particularly, band at 520 nm identified with the transition in Mn2+ in tetrahedral positions and the emission in the red spectral region (consisting of zero-phonon line at 686.6 nm and phonon-assisted lines) related to the transition in Cr3+ ions at the octahedral position. Based on the data on the quenching UV luminescence in stoichiometric crystals doped with TM, we suggest the partial ordering of this type of crystals. The enhancement of Cr3+ luminescence in stoichiometric spinel crystals doped with manganese and iron supports this suggestion on the ordering of the spinel crystals by doping with some TM’s. The existence of a large number of non-stoichiometric cationic vacancies in non-stoichiometric spinel crystals prevents the formation of an ordered structure.
  1. R. P. Gupta, “Radiation-Induced Cation Disorder in the Spinel MgAl2O4,” J. Nucl. Mater., vol. 358, no. 1, pp. 35 – 39, Nov. 2006.
    DOI: 10.1016/j.jnucmat.2006.05.3055
  2. A. Krell, K. Waetzig, J. Klimke, “Influence of the Structure of MgO∙nAl2O3 Spinel Lattices on Transparent Ceramics Processing and Properties,” J. Eur. Ceram. Soc., vol. 32, no. 11, pp. 2887 – 2898, Aug. 2012.
    DOI: 10.1016/j.jeurceramsoc.2012.02.054
  3. H. Aizava et al., “Characteristics of Chromium Doped Spinel Crystals for a Fiber-Optic Thermometer Application,” Rev. Sci. Instrum., vol. 73, no. 8, pp. 3089 – 3092, Aug. 2002.
    DOI: 10.1063/1.1491998
  4. Y. Fujimoto et al., “Vanadium-Doped MgAl2O4 Crystals as White Light Source,” J. Lumin., vol. 128, no. 3, pp. 282 – 286, Mar. 2008.
    DOI: 10.1016/j.jlumion.2007.07.022
  5. T. Katsumata et al., “X-ray Excited Optical Luminescence from Mn Doped Spinel Crystals,” ECS Solid State Let., vol. 3, no. 7, pp. R23 – R25, May 2014.
    DOI: 10.1149/2.0011407ssl
  6. R. Martignago, A. Dal Negro, S. Carbonin, “How Cr3+ and Fe3+ Affect Mg-Al Order-Disorder Transformation at High Temperature in Natural Spinels,” Phys. Chem. Minerals, vol. 30, no. 7, pp. 401 – 408, Aug. 2003.
    DOI: 10.1007/s00269-003-0336-0
  7. A. Lorincz, M. Puma, F. J. James, J. H. Crawford, Jr., “Thermally Stimulated Processes Involving Defects in γ- and X-irradiated spinel (MgAl2O4),” J. Appl. Phys., vol. 53, no. 2, pp. 927 – 932, 1982.
    DOI: 10.1063/1.330562
  8. V. T. Gritsyna, Yu. G. Kazarinov, V. A. Kobyakov, I. E, Reimanis, “Radiation-induced luminescence in magnesium aluminate spinel crystals and ceramics,” Nucl. Instr. Meth. B, vol. 250, no. 1-2, pp. 342 – 348, Sep. 2006.
    DOI: 10.1016/j.nimb.2006.04.135
  9. J. M. G. Tijero, A. Ibarra, “Use of Luminescence of Mn2+ and Cr3+ in Probing the Disordering Process in MgAl2O4 Spinels,” J. Phys. Chem. Solids, vol. 54, no. 2, pp. 203 – 207, Feb. 1993.
    DOI: 10.1016/0022-3697(93)90309-F
  10. G. I. Belykh, V. T. Gritsyna, L. A. Lytvynov, V. B. Kol`ner, “Structural and mechanical characteristics of magnesium-aluminate spinel crystals grown by Verneuil and Czochralski methods,” Funct. Mater., vol. 12, no. 3, pp. 447 – 453, 2005.
    Retrieved from: http://www.functmaterials.org.ua/contents/12-3/fm123-06.pdf;
    Retrieved on: Jan 25, 2018
  11. V. Skvortsova, N. Mironova-Ulmane, U. Ulmanis, “Neutron irradiation influence on magnesium aluminum spinel inversion,” Nucl. Instr. Meth. B, vol. 191, no. 1-4, pp. 256 – 260, May 2002.
    DOI: 10.1016/S0168-583X(02)00571-2
  12. V. T. Gritsyna, I. V. Afanasyev-Charkin, V. A. Kobyakov, K.E. Sickafus, “Structure and Electronic States of Defects in Spinel of Different Compositions MgO·nAl2O3:Me,” J. Am. Ceram. Soc., vol. 82, no. 12, pp. 3365 – 3373, Dec. 1999.
    DOI: 10.1111/j.1151-2916.1999.tb02252.x
  13. V. Gritsyna, Yu. Kazarinov, A. Moskvitin, “Radio-Luminescence of Defects and Impurity Ions in Magnesium Aluminates Spinel,” Sol. St. Phen., vol. 200, pp. 203 – 208, Apr. 2013.
    DOI: 10.4028/www.scientific.net/SSP.200.203
  14. S. S. Raj et al., “MgAl2O4 Spinel: Synthesis, Carbon Incorporation and Defect-Induced luminescence,” J. Mol. Struct., vol. 1089, pp. 81 – 85, 2015.
    DOI: 10.1016/j.molstruc.2015.02.002
  15. N. Mironova, V. Skvortsova, A. Smirnovs, L. Cugunov, “Distribution of Manganese Ions in Magnesium-Aluminum Spinels of Different Compositions,” Optical Mater., vol. 6, no. 3, pp. 225 – 232, Sep. 1996.
    DOI: 10.1016/0925-3467(96)00037-7
  16. S. Lucchesi, A. Della Giusta, “Crystal chemistry of non-stoichiometric Mg —AI synthetic spinels,” Z. Kristallogr. Cryst. Mater., vol. 209, no. 9, pp. 714 – 719, Sep. 1994.
    DOI: 10.1524/zkri.1994.209.9.714
  17. A. Tomita et al., “Luminescence Channels of Manganese-Doped Spinel,” J. Luminesc., vol. 109, no. 1, pp. 19 – 24, Jul. 2004.
    DOI: 10.1016/j.jlumin.2003.12.049
  18. T. Sakuma et al., “Compositional variation of photoluminescence from Mn doped MgAl2O4 Spinel,” Opt. mater., vol. 27, pp. 302 – 305, Nov. 2014.
    DOI: 10.1016/j.optmat.2014.06.014
  19. J. Sima, “(Non)luminescent Properties of Iron Compounds,” Acta Chimica Slovaca, vol. 8, no. 2, pp. 126 – 132, Oct. 2015.
    DOI: 10.1515/ACS-2015-0022
  20. C. R. Varney et al., “Strong visible and Near Infrared Luminescence in Undoped YAG Single Crystals,” AIP Adv., vol. 1, no. 4, 042170, 2011.
    DOI: 10.1063/1.3671646