Volume 3, Issue 1

Original research papers

Radiation Protection


Ana Luísa Casimiro, Jorge Miguel Sampaio, Patrícia Gonçalves

Pages: 27-33

DOI: 10.21175/RadJ.2018.01.006

Received: 15 APR 2017, Received revised: 30 JUN 2017, Accepted: 19 JUL 2017, Published online: 2 APR 2018

The biggest risks in a mission to Mars are the long periods of time with the lack of gravity, the psychological effects due to isolation, the risk of contamination by diseases in confined space, and exposure to high doses of radiation. It is recognized that the latter poses the greatest scientific and technological challenge to a viable mission. In this work, we present estimates of the equivalent dose in an astronaut for three mission-to-Mars profiles proposed by NASA. For this, we performed Monte Carlo simulations of the energy deposited in the ICRU sphere taking into account the main radiation sources in space using the Geant4 simulation toolkit. The results show that the introduction of 10 cm equivalent Al shielding significantly reduces the equivalent dose, although our estimates are still above the dose limits adopted by NASA. These results show, however, that the values are in the range for optimization in terms of shielding solutions, as well as the choice of the most appropriate mission trajectories to minimize the dose to astronauts.
  1. NASA’s Journey to Mars: Pioneering Next Steps in Space Exploration, NASA, Washington (DC), USA: 2015.
    Retrieved from: https://www.nasa.gov/sites/default/files/atoms/files/journey-to-mars-next-steps-20151008_508.pdf;
    Retrieved on: Dec. 10, 2017
  2. S. M.-Lawlor et al., “Overview of energetic particle hazards during prospective manned missions to Mars,” Planet. Space Sci., vol. 63-64, pp. 123 – 132, Apr. 2012.
    DOI: 10.1016/j.pss.2011.06.017
  3. M. Durante, “Space radiation protection: Destination Mars,” Life Sci. Space Res., no. 1, pp. 2 – 9, Apr. 2014.
    DOI: 10.1016/j.lssr.2014.01.002
    PMid: 26432587
  4. J. A. Simpson, “Elemental and isotopic composition of the galactic cosmic rays,” Ann. Rev. Nucl. Part. Sci. vol. 33, pp. 323 – 381, Dec. 1983.
    DOI: 10.1146/annurev.ns.33.120183.001543
  5. Assessment of radiation exposure of astronauts in space, ICRP Publication 123, ICRP, Ottawa, Canada, 2013.
    DOI: 10.1016/j.icrp.2013.05.004
    PMid: 23958389
  6. N. Yu Ganushkina et al., “Locations of boundaries of outer and inner radiation belts as observed by cluster and double star,” J. Geophys. Res. A, vol. 116, no. A9, A09234, Sep. 2011.
    DOI: 10.1029/2010JA016376
  7. D. V. Reames, “The two sources of solar energetic particles,” Space Sci. Rev., no. 175, no. 1-4, pp. 53 – 92, Jun. 2013.
    DOI: 10.1007/s11214-013-9958-9
  8. S. K. Antiochos et al., “A model for solar coronal mass ejection,” Astrophys. J., vol. 510, no. 1, pp. 485 – 493, Jan. 1999.
    DOI: 10.1086/306563
  9. M. J. Aschwanden, “The localization of particle acceleration sites in solar flares and CMEs,” Space Sci. Rev., vol. 124, no. 1-4, pp. 361 – 372, Jun. 2006.
    DOI: 10.1007/s11214-006-9095-9
  10. N. Gopalswamy et al., “Type II radio bursts and energetic solar eruptions,” J. Geophys. Res.-Space, vol. 110, no. A9, A09s00, Sep. 2005.
    DOI: 10.1029/2005JA011158
  11. S. C. R. Rafkin et al., “Diurnal variations of energetic particle radiation at the surface of Mars as observed by the Mars Science Laboratory Radiation Assessment Detector,” J. Geophys. Res.-Planet, vol. 119, no. 6, pp. 1345 – 1358, Jun. 2014.
    DOI: 10.1002/2013JE004525
  12. Wimmer-Schweingruber et al., “On Determining the Zenith-Angle Dependence of the Martian Radiation Environment at Gale Crater Altitudes,” Geophys. Res. Lett., vol. 42, no. 24, pp. 10557 – 10564, Dec. 2015.
    DOI: 10.1002/2015GL066664
  13. S. M.-Lawlor et al, “Characterization of the particle radiation environment at three potential landing sites on Mars using ESA’s MEREM models,” Icarus, vol. 218, no. 1, pp. 723 – 734, Mar. 2012.
    DOI: 10.1016/j.icarus.2011.04.004
  14. P. Gonçalves et al., “MARSREM: the Mars Energetic Radiation Environment Models,” in Proc. 31st Int. Cosmic Ray Conf. (ICRC), Łódź, Poland, 2010, pp. 1 – 4.
  15. D. M. Hassler et al., “Mars` surface radiation environment measured with the Mars Science Laboratory`s curiosity rover,” Science, vol. 343, no. 6169, 1244797, Jan. 2014.
    DOI: 10.1126/science.1244797
    PMid: 24324275
  16. D. R. Williams, A crewed mission to Mars, NASA, Washington (DC), USA, 2015.
    Retrieved from: http://nssdc.gsfc.nasa.gov/planetary/mars/marsprof.html;
    Retrieved on: Oct. 10, 2016
  17. S. Agostinelli et al., “Geant4- simulation toolkit,” Nucl. Instr. Meth. Phys. Res. A, vol. 506, no. 3, pp. 250 – 303, Jul. 2003.
    DOI: 10.1016/S0168-9002(03)01368-8
  18. J. Allison et al., “Geant4 developments and applications,” IEEE Trans. Nucl. Sci., no. 53, no. 1, pp. 270 – 278, Feb. 2006.
    DOI: 10.1109/TNS.2006.869826
  19. Radiation Quantities and Units, ICRU Rep. 33, ICRU, Washington (DC), USA, 1980.
    DOI: 10.1002/jlcr.2580180918
  20. S. Calders et al., Space environment information system (SPENVIS) version 4.6.9, European Space Agency, Paris, France, 2017.
    Retrieved from: https://www.spenvis.oma.be;
    Retrieved on: Jan. 17, 2018
  21. R. A. Braeunig, “Apollo 11`s translunar trajectory and how they avoided the heart of the radiation belts,” braeuing.us, Mar. 24, 2016.
    Retrieved from: http://www.braeunig.us/apollo/apollo11TLI.htm;
    Retrieved on: Oct. 10, 2016.
  22. B. Ehresmann et al., “Charged particle spectra measured during the transit to Mars with the Mars Science Laboratory Radiation Assessment Detector (MSL/RAD)”, Life Sci. Space Res., no. 10, pp. 29 – 37, Aug. 2016.
    DOI: 10.1016/j.lssr.2016.07.001
    PMid: 27662785
  23. The 2007 Recommendations of the International Commission on Radiological Protection, ICRP Publication 103, ICRP, Ottawa, Canada, 2007.
    Retrieved from: https://www.sciencedirect.com/journal/annals-of-the-icrp/vol/37/issue/2;
    Retrieved on: Oct. 10, 2016
  24. Basic Anatomical and Physiological Data for Use in Radiological Protection Reference Values, ICRP Publication 89, ICRP, Ottawa, Canada, 2002.
    Retrieved from: https://www.sciencedirect.com/journal/annals-of-the-icrp/vol/32/issue/3;
    Retrieved on: Oct. 10, 2016
  25. Radiation Protection Guidance for Activities in Low-Earth Orbit, Report No. 132, NCRP, Bathesda (MD), USA, 2000.
  26. Space environment (natural and artificial) – Galactic cosmic ray model, ISO 15390, May, 2004.
    Retrieved from: http://www.spacewx.com/Docs/ISO_PRF_15390_E.PDF;
    Retrieved on: Oct. 10, 2016
  27. S. M. McLennan et al, “Elemental geochemistry of sedimentary rocks at Yellowknife Bay, Gale Crater, Mars,” Science, vol. 343, no. 6169, 1244734, Jan. 2014.
    DOI: 10.1126/science.1244734
    PMid: 24324274
  28. D. M. Hassler et al, “Mars’ surface radiation environment measured with the Mars Science Laboratory’s Curiosity rover,” Science, vol. 343, no. 6169, 1244797, Jan. 2014.
    DOI: 10.1126/science.1244797
    PMid: 24324275
  29. D. M. Hassler et al., “The Radiation Assessment Detector (RAD) investigation,” Space Sci. Rev., vol. 170, no. 1-4, pp. 503 – 558, Sep. 2012.
    DOI: 10.1007/s11214-012-9913-1
  30. C. Zeitlin et al., “Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory,” Science, vol. 340, no. 6136, pp. 1080 – 1084, May 2013.
    DOI: 10.1126/science.1235989
    PMid: 23723233
  31. J. Guo et al., “Variations of dose rate observed by MSL/RAD in transit to Mars,” Astron. Astrophys., vol. 577, A58, May 2015.
    DOI: 10.1051/0004-6361/201525680
  32. A. Mrigakshi et al., “Estimation of Galactic Cosmic Ray exposure inside and outside the Earth’s magnetosphere during the recent solar minimumbetween solar cycles 23 and 24,” Adv. Space Res., vol. 52, no. 5, pp. 979 – 987, Sep. 2013.
    DOI: 10.1016/j.asr.2013.05.007