|
ANTIBACTERIAL ACTIVITY OF METALS WITH MEDICAL APPLICATION
Iva Slavova, Denitsa Kiradzhiyska, Rositsa Mancheva
Pages: 71-87
DOI: 10.21175/RadJ.2018.02.013
Received: 24 AUG 2018, Received revised: 10 DEC 2018, Accepted: 12 DEC 2018, Published online: 27 DEC 2018
Abstract |
References |
Full Text (PDF)
The most common classification of certain biomaterials is proposed according to their nature, biological behavior, and application specificity. Data on the antibacterial activity of the metals Ag, Cu, Mg, Zn, Se, and Zr are summarized. A brief historical review of their use in the treatment of various infections has been made. The mechanisms of antibacterial action and the role of some implant surface modifications are discussed.
- F. J. O’Brien, “Biomaterials & scaffolds for tissue engineering,” Materials today, vol. 14, no. 3, pp. 88 – 95 , Mar. 2011.
DOI: 10.1016/S1369-7021(11)70058-X - T. Dikova, “Nano-engineered coatings on titanium implants,” Scr. Sci. Medica, vol. 44, no. 2, pp. 23 – 25, Dec. 2012.
DOI: 10.14748/ssm.v44i2.352 - Y. Qin, “Textiles for implants and regenerative medicine,” in Medical Textile Materials, Cambridge, UK: Elsevier, 2016, ch. 10, sec. 10.2, pp. 133 – 135.
DOI: 10.1016/C2014-0-04473-5 - M. Geetha, A. K. Singh, R. Asokamani, and A. K. Gogia, “Ti based biomaterials, the ultimate choice for orthopaedic implants-a review,” Prog. Mater. Sci., vol. 54, no. 3, pp. 397 – 425, May 2009.
DOI: 10.1016/j.pmatsci.2008.06.004 - J. Venkatesan, S. K. Kim, “Chitosan composites for bone tissue engineering-an overview,” Mar. Drugs, vol. 8, no. 8, pp. 2252 – 2266, Aug. 2010.
DOI: 10.3390/md8082252 PMid: 20948907 PMCid: PMC2953403 - D. F. Williams, “On the mechanisms of biocompatibility,” Biomaterials, vol. 29, no. 20, pp. 2941 – 2953, Jul. 2008.
DOI: 10.1016/j.biomaterials.2008.04.023 PMid: 18440630 - T. M. Sridhar, S. Rajeswari, “Biomaterials corrosion,” Corros. Rev., vol. 27, no. suppl, pp. 287 – 332, Jan. 2009.
DOI: 10.1515/corrrev.2009.27.s1.287 - J. Chevalier, L. Gremillard, “Ceramics for medical applications: a picture for the next 20 years,” J. Eur. Ceram. Soc., vol. 29, no. 7, pp. 1245 – 1255, Apr. 2009.
DOI: 10.1016/j.jeurceramsoc.2008.08.025 - D. F. Williams, Definitions in Biomaterials: Proceedings of a Consensus Conference of the European Society for Biomaterials, Chester, UK: Elsevier, 1987.
- E. S. Park, Biomaterials in medical devices, Medtronic, Inc., Minneapolis (MN), USA.
Retrieved from: http://insegnamento/175779-Scienza-E-Tecnologia-Dei-Biomateriali/56640-Medtronic; Retrieved on: Aug. 15, 2018 - J. R. Jones and L. L. Hench, “Biomedical materials for new millennium: perspective on the future,” Mater. Sci. Technol., vol. 17, no. 8, pp. 891 – 900, Jul. 2001.
DOI: 10.1179/026708301101510762 - J. R. Jones, “Scaffolds for tissue engineering” in Biomaterials, artificial organs and tissue engineering, Cambridge, UK: Elsevier, 2005, ch. 4, sec. 19, 201 – 214.
DOI: 10.1533/9781845690861.4.201 - L. L. Hench, “Biomaterials: a forecast for the future,” Biomaterials, vol. 19, no. 16, pp. 1419 – 1423, Aug. 1998.
DOI: 10.1016/s0142-9612(98)00133-1 PMid: 9794512 - H. Hermawan, “Biodegradable metals: state of art,” in Biodegradable Metals, Heildelberg, Germany: Springer, 2012, ch. 2, pp. 13 – 22.
DOI: 10.1007/978-3-642-31170-3_2 - M. Bohner, “Resorbable biomaterials as bone graft substitutes,” Mater. Today, vol. 13, no. 1-2, pp. 24 – 30, Jan-Feb. 2010.
DOI: 10.1016/S1369-7021(10)70014-6 - X. N. Gu, X. H. Xie, N. Li, Y. F. Zheng, and L. Qin, “In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal,” Acta Biomater., vol. 8, no. 6, pp. 2360 – 2374, Jul. 2012.
DOI: 10.1016/j.actbio.2012.02.018 PMid: 22387336 - P. Aramwit, “Introduction to biomaterials for wound healing,” in Wound healing biomaterials, vol. 2, M. S. Agren, Ed., Cambridge, UK: Woodhead Publishing, 2016, ch. 1, pp. 3 – 38.
DOI: 10.1016/B978-1-78242-456-7.00001-5 - H. Chai et al., “Antibacterial effect of 317L stainless steel contained copper in prevention of implant-related infection in vitro and in vivo,” J. Mater. Sci. Mater. Med., vol. 22, no. 11, pp. 2525 – 2535, Nov. 2011.
DOI: 10.1007/s10856-011-4427-z PMid: 21870079 - Antimicrobial resistance surveillance in Europe, Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net) 2011, European Center for Disease Prevention and Control, Stockholm, Sweden, 2012.
DOI: 10.2900/6551 - Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics, WHO, Geneva, Switzerland, 2017.
Retrieved from: http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf Retrieved on: Jul. 25, 2018 - K. H. Liao, K. L. Ou, H. C. Cheng, C. T. Lin, and P. W. Peng, “Effect of silver on antibacterial properties of stainless steel,” Appl. Surf. Sci., vol. 256, no. 11, pp. 3641 – 3645, Mar. 2010.
DOI: 10.1016/j.apsusc.2010.01.001 - J. W. Costerton, P. S. Stewart, and E. P. Greenberg, “Bacterial biofilms: a common cause of persistent infections,” Science, vol. 284, no. 5418, pp. 1318 – 1322, May 1999.
DOI: 10.1126/science.284.5418.1318 PMid: 10334980 - P. Stephens, “Antibiotic resistance now ‘global threat’, WHO warns,” BBC News, Apr. 30, 2014.
Retrieved from: https://www.bbc.co.uk/news/health-27204988; Retrieved on: Aug. 5, 2018 - P. Taylor et al., “Antibacterial properties of nine pure metals: a laboratory study using Staphylococcus aureus and Escherichia coli,” Biofouling, vol. 26, no. 7, pp. 37 – 41, Oct. 2010.
DOI: 10.1080/08927014.2010.527000 PMid: 20938849 - M. Yoshinari, Y. Oda, T. Kato, and K. Okuda, “Influence of surface modifications to titanium on antibacterial activity in vitro,” Biomaterials, vol. 22, no. 14, pp. 1 – 2, Jul. 2001.
DOI: 10.1016/s0142-9612(00)00392-6 PMid: 11426884 - S. H. Jeong, Y. Y. Sang, and C. Y. Sung, “The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers,” J. Mater. Sci., vol. 40, no. 20, pp. 5407 – 5411, Oct. 2005.
DOI: 10.1007/s10853-005-4339-8 - R. L. Davies and S. F. Etris, “The development and functions of silver in water purification and disease control,” Catal. Today, vol. 36, no. 1, pp. 107 – 114, Apr. 1997.
DOI: 10.1016/s0920-5861(96)00203-9 - S. W. Wijnhoven et al., “Nano-silver-a review of available data and knowledge gaps in human and environmental risk assessment,” Nanotoxicology, vol. 3, no. 2, pp. 109 – 138, Jun. 2009.
DOI: 10.1080/17435390902725914 - M. K. Rai, S. D. Deshmukh, A. P. Ingle, and A. K. Gade, “Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria,” J. Appl. Microbiol., vol. 112, no. 5, pp. 841 – 852, May 2012.
DOI: 10.1111/j.1365-2672.2012.05253.x PMid: 22324439 - B. S. Atiyeh, M. Costagliola, S. N. Hayek, and S. A. Dibo, “Effect of silver on burn wound infection control and healing: review of the literature,” Burns, vol. 33, no. 2, pp. 139 – 148, Mar. 2007.
DOI: 10.1016/j.burns.2006.06.010 PMid: 17137719 - M. C. Fung and D. L. Bowen, “Silver products for medical indications: risk-benefit assessment,” J. Toxicol. Clin. Toxicol., vol. 34, no. 1, pp. 119 – 126, Jan. 1996.
DOI: 10.3109/15563659609020246 PMid: 8632503 - M. Rai, A. P. Ingle, and S. Medici, Biomedical Applications of Metals, Basel, Switzerland: Springer International Publishing, 2018.
DOI: 10.1007/978-3-319-74814-6 - Panáček et al., “Antifungal activity of silver nanoparticles against Candida spp.,” Biomaterials, vol. 30, no. 31, pp. 6333 – 6340, Oct. 2009.
DOI: 10.1016/j.biomaterials.2009.07.065 PMid: 19698988 - A. E. Mohammed, “Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles mediated by Eucalyptus camaldulensis leaf extract,” Asian Pac. J. Trop. Biomed., vol. 5, no. 5, pp. 382 – 386, May 2015.
DOI: 10.1016/S2221-1691(15)30373-7 - W. J. Schreurs and H. Rosenberg, “Effect of silver ions on transport and retention of phosphate by Escherichia coli,” J. Bacteriol., vol. 152, no. 1, pp. 7 – 13, Oct. 1982.
PMid: 6749823 PMCid: PMC221367 - M. Rai et al., “Nanosilver: an inorganic nanoparticle with myriad potential applications,” Nanotechnol. Rev., vol. 3, no. 3, pp. 281 – 309, Apr. 2014.
DOI: 10.1515/ntrev-2014-0001 - A. B. Lansdown, “Silver I: its antibacterial properties and mechanism of action,” J. Wound Care, vol. 11, no. 4, pp. 125 – 130, Apr. 2002.
DOI: 10.12968/jowc.2002.11.4.26389 PMid: 11998592 - Y. Yakabe, T. Sano, H. Ushio, and T. Yasunaga, “Kinetic studies of the interaction between silver ion and deoxyribonucleic acid,” Chem. Lett., vol. 9, no. 4, pp. 373 – 376, Apr. 1980.
DOI: 10.1246/cl.1980.373 - G. A. Fielding, M. Roy, A. Bandyopadhyay, S. Bose, “Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings,” Acta Biomater., vol. 8, no. 8, pp. 3144 – 3152, Aug. 2012.
DOI: 10.1016/j.actbio.2012.04.004 PMid: 22487928 PMCid: PMC3393112 - G. V. Vimbela, S. M. Ngo, C. Fraze, L. Yang, D. A. Stout, “Antibacterial properties and toxicity from metallic nanomaterials,” Int. J. Nanomedicine, vol. 12, pp. 3941 – 3965, May 2017.
DOI: 10.2147/IJN.S134526 PMid: 28579779 PMCid: PMC5449158 - W. Zhang, Y. Li, J. Niu, Y. Chen, “Photogeneration of reactive oxygen species on uncoated silver, gold, nickel, and silicon nanoparticles and their antibacterial effects,” Langmuir, vol. 29, no. 15, pp. 4647 – 4651, Apr. 2013.
DOI: 10.1021/la400500t PMid: 23544954 - R. B. K. Wakshlak, R. Pedahzur, D. Avnir, “Antibacterial activity of silver-killed bacteria: the" zombies" effect,” Scientific reports, vol. 5, no. 9555, Apr. 2015.
DOI: 10.1038/srep09555 PMid: 25906433 PMCid: PMC5386105 - K. Das, S. Bose, A. Bandyopadhyay, B. Karandikar. B. L. Gibbins, “Surface coatings for improvement of bone cell materials and antimicrobial activities of Ti implants,” J. Biomed. Mater. Res. Part B Appl. Biomater., vol. 87, no. 2, pp. 455 – 460, Nov. 2008.
DOI: 10.1002/jbm.b.31125 PMid: 18481793 - R. Mittal, S. Aggarwal, S. Sharma, S. Chhibber, K. Harjai, “Urinary tract infections caused by Pseudomonas aeruginosa: a minireview,” J. Infect. Public Health, vol. 2, no. 3, pp. 101 – 111, 2009.
DOI: 10.1016/j.jiph.2009.08.003 PMid: 20701869 - K. G. Kerr, A. M. Snelling, “Pseudomonas aeruginosa: a formidable and ever-present adversary,” J. Hosp. Infect., vol. 73, no. 4, pp. 338 – 344, Dec. 2009.
DOI: 10.1016/j.jhin.2009.04.020 PMid: 19699552 - B. Le Ouay and F. Stellacci, “Antibacterial activity of silver nanoparticles: a surface science insight,” Nano Today, vol. 10, no. 3, pp. 339 – 354, Jun. 2015.
DOI: 10.1016/j.nantod.2015.04.002 - R. Salomoni, P. Léo, A. F. Montemor, B. G. Rinaldi, M. F. A. Rodrigues, “Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa,” Nanotechnol. Sci. Appl., vol. 10, pp. 115 – 121, Jun. 2017.
DOI: 10.2147/NSA.S133415 PMid: 28721025 PMCid: PMC5499936 - G. A. Martinez-Castanon, N. Nino-Martinez, F. Martinez-Gutierrez, J. R. Martinez-Mendoza, F. Ruiz, “Synthesis and antibacterial activity of silver nanoparticles with different sizes,” J. Nanoparticle Res., vol. 10, no. 8, pp. 1343 – 1348, Jul. 2008.
DOI: 10.1007/s11051-008-9428-6 - J. Nasrin Begam, “Biosynthesis and characterization of silver nanoparticles (AgNPs) using marine bacteria against certain human pathogens,” International Journal of Advances in Scientific Research, vol. 16, no. 10, pp. 2346 – 2353, Aug. 2016.
DOI: 10.7439/ijasr.v2i7.3514 - M. R. Nateghi, H. Hajimirzababa, “Effect of silver nanoparticles morphologies on antimicrobial properties of cotton fabrics,” J. Text. Inst., vol. 105, no. 8, pp. 806 – 813, Jan. 2014.
DOI: 10.1080/00405000.2013.855377 - I. Sondi and B. Salopek-Sondi, “Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria,” J. Colloid Interface Sci., vol. 275, no. 1, pp. 177 – 182, Jul. 2004.
DOI: 10.1016/j.jcis.2004.02.012 PMid: 15158396 - J. S. Kim et al., “Antimicrobial effects of silver nanoparticles,” Nanomedicine Nanotechnology, Biol. Med., vol. 3, no. 1, pp. 95 – 101, Mar. 2007.
DOI: 10.1016/j.nano.2006.12.001 PMid: 17379174 - J. Thiel et al., “Antibacterial properties of silver-doped titania,” Small, vol. 3, no. 5, pp. 799 – 803, May 2007.
DOI: 10.1002/smll.200600481 PMid: 17340662 - G. Hu et al., “Antibacterial activity of silver nanoparticles with different morphologies as well as their possible antibacterial mechanism,” Appl. Phys. A, vol. 122, no. 10, pp. 874 – 880, Sep. 2016.
DOI: 10.1007/s00339-016-0395-y - S. Shrivastava et al., “Characterization of enhanced antibacterial effects of novel silver nanoparticles,” Nanotechnology, vol. 18, no. 22, p. 225103, May 2007.
DOI: 10.1088/0957-4484/18/22/225103 - H. H. Lara, N. V. Ayala-Núñez, L. D. C. I. Turrent, C. R. Padilla, “Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria,” World J. Microbiol. Biotechnol., vol. 26, no. 4, pp. 615 – 621, Oct. 2010.
DOI: 10.1007/s11274-009-0211-3 - J. J. Buckley, A. F. Lee, and K. Wilson, “Hydroxyapatite supported antibacterial Ag3PO4 nanoparticles,” J. Mater. Chem., vol. 20, no. 37, pp. 8056 – 8063, Oct. 2010.
DOI: 10.1039/c0jm01500h - S. Sohrabnezhad, A. Pourahmad, M. J. M. Moghaddam, A. Sadeghi, “Study of antibacterial activity of Ag and Ag2CO3 nanoparticles stabilized over montmorillonite,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 136, pp. 1728-1733, Feb. 2015.
DOI: 10.1016/j.saa.2014.10.074 PMid: 25467663 - J. J. Buckley, P. L. Gai, A. F. Lee, L. Olivi, K. Wilson, “Silver carbonate nanoparticles stabilised over alumina nanoneedles exhibiting potent antibacterial properties,” Chem. Commun., vol. 34, pp. 4013 – 4015, Sep. 2008.
DOI: 10.1039/b809086f PMid: 18758610 - A. Besinis, T. De Peralta, R. D. Handy, “The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays,” Nanotoxicology, vol. 8, no. 1, pp. 1 – 16, Feb. 2014.
DOI: 10.3109/17435390.2012.742935 PMid: 23092443 PMCid: PMC3878355 - J. Liu et al., “The antibacterial properties and biocompatibility of a Ti-Cu sintered alloy for biomedical application,” Biomed. Mater., vol. 9, no. 2, p. 025013, Apr. 2014.
DOI: 10.1088/1748-6041/9/2/025013 PMid: 24565798 - S. Kittler, C. Greulich, J. Diendorf, M. Koller, M. Epple, “Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions,” Chem. Mater., vol. 22, no. 16, pp. 4548 – 4554, Aug. 2010.
DOI: 10.1021/cm100023p - S. Chernousova, M. Epple, “Silver as antibacterial agent: ion, nanoparticle, and metal,” Angew. Chemie Int. Ed., vol. 52, no. 6, pp. 1636 – 1653, Feb. 2013.
DOI: 10.1002/anie.201205923 PMid: 23255416 - A. R. Gliga, S. Skoglund, I. O. Wallinder, B. Fadeel, H. L. Karlsson, “Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release,” Part. Fibre Toxicol., vol. 11, no. 1, pp. 1 – 17, Feb. 2014.
DOI: 10.1186/1743-8977-11-11 PMid: 24529161 PMCid: PMC3933429 - L. Li et al., “Controllable synthesis of monodispersed silver nanoparticles as standards for quantitative assessment of their cytotoxicity,” Biomaterials, vol. 33, no. 6, pp. 1714 – 1721, Feb. 2012.
DOI: 10.1016/j.biomaterials.2011.11.030 PMid: 22137123 - A. R. Shahverdi, A. Fakhimi, H. R. Shahverdi, S. Minaian, “Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli,” Nanomed.: Nanotechnol., Biol. Med., vol. 3, no. 2, pp. 168 – 171, Jun. 2007.
DOI: 10.1016/j.nano.2007.02.001 PMid: 17468052 - V. Dhand et al., “Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity,” Mater. Sci. Eng. C, vol. 58, pp. 36 – 43, Jan. 2016.
DOI: 10.1016/j.msec.2015.08.018 PMid: 26478284 - F. K. Alsammarraie, W. Wang, P. Zhou, A. Mustapha, and M. Lin, “Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities,” Colloids. Surf. B. Biointerfaces., vol. 171, pp. 398 – 405, Nov. 2018.
DOI: 10.1016/j.colsurfb.2018.07.059 PMid: 30071481 - S. Husain, M. Sardar, and T. Fatma, “Screening of cyanobacterial extracts for synthesis of silver nanoparticles,” World J. Microbiol. Biotechnol., vol. 31, no. 8, pp. 1279 – 1283, May 2015.
DOI: 10.1007/s11274-015-1869-3 - M. Ghaedi, M. Yousefinejad, M. Safarpoor, H. Z. Khafri, M. K. Purkait, “Rosmarinus officinalis leaf extract mediated green synthesis of silver nanoparticles and investigation of its antimicrobial properties,” J. Ind. Eng. Chem., vol. 31, pp. 167 – 172, Nov. 2015.
DOI: 10.1016/j.jiec.2015.06.020 - M. Soltanzadeh, M. Soltani Nejad, and G. H. S. Bonjar, “Application of Soil‐borne Actinomycetes for Biological Control against Fusarium Wilt of Chickpea (Cicer arietinum) caused by Fusarium solani fsp pisi,” J. Phytopath., vol. 164, no. 3, pp. 967–978, Oct. 2016.
DOI: 10.1111/jph.12517 - A. K. Mittal, Y. Chisti, U. C. Banerjee, “Synthesis of metallic nanoparticles using plant extracts,” Biotechnol. Adv., vol. 31, no. 2, pp. 346 – 356, Mar-Apr. 2013.
DOI: 10.1016/j.biotechadv.2013.01.003 PMid: 23318667 - B. Sadeghi, F. Gholamhoseinpoor, “A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature,” Spectrochim. Acta A Mol. Biomol. Spectrosc., vol. 134, pp. 310 – 315, Jan. 2015.
DOI: 10.1016/j.saa.2014.06.046 PMid: 25022503 - P. R. Sre, M. Reka, R. Poovazhagi, M. A. Kumar, and K. Murugesan, “Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica lam,” Spectrochim. Acta A Mol. Biomol. Spectrosc., vol. 135, pp. 1137 – 1144, Jan. 2015.
DOI: 10.1016/j.saa.2014.08.019 PMid: 25189525 - P. Sanguiñedo et al., “Extracellular biosynthesis of Silver nanoparticles using fungi and their antibacterial activity,” Nano Biomed. Eng., vol. 10, no. 2, pp. 165 – 173, Jun. 2018.
DOI: 10.5101/nbe.v10i2.p165-173 - E. Cremonini et al., “Biogenic selenium nanoparticles synthesized by Stenotrophomonas maltophilia Se ITE 02 loose antibacterial and antibiofilm efficacy as a result of the progressive alteration of their organic coating layer,” Microb. Biotechnol., vol. 11, no. 6, pp. 1037 – 1047, Apr. 2018.
DOI: 10.1111/1751-7915.13260 PMid: 29635772 PMCid: PMC6196382 - P. Golinska et al., “Biogenic synthesis of metal nanoparticles from actinomycetes: biomedical applications and cytotoxicity,” Appl. Microbiol. Biotechnol., vol. 98, no. 19, pp. 8083 – 8097, Oct. 2014.
DOI: 10.1007/s00253-014-5953-7 PMid: 25158833 - P. Kuppusamy, M. M. Yusoff, G. P. Maniam, N. Govindan, “Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications–An updated report,” Saudi Pharmaceutical Journal, vol. 24, no. 4, pp. 473 – 484, Jul. 2016.
DOI: 10.1016/j.jsps.2014.11.013 - E. Abbasi et al., “Silver nanoparticles: synthesis methods, bio-applications and properties,” Crit. Rev. Microbiol., vol. 42, no. 2, pp. 173 – 180, 2016.
DOI: 10.3109/1040841X.2014.912200 - S. Ahmed, M. Ahmad, B. L. Swami, S. Ikram, “Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract,” J. Radiat. Res. Appl. Sci., vol. 9, no. 1, pp. 1 – 7, Jan. 2016.
DOI: 10.1016/j.jrras.2015.06.006 - H. M. Ibrahim, “Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms,” J. Radiat. Res. Appl. Sci., vol. 8, no. 3, pp. 265 – 275, Jul. 2015.
DOI: 10.1016/j.jrras.2015.01.007 - G. Benelli, “Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer—a brief review,” Enzyme Microb. Technol., vol. 95, pp. 58 – 68, Dec. 2016.
DOI: 10.1016/j.enzmictec.2016.08.022 PMid: 27866627 - F. F. Soleimani, T. Saleh, S. A. Shojaosadati, R. Poursalehi, “Green synthesis of different shapes of Silver nanostructures and evaluation of their antibacterial and cytotoxic activity,” BioNanoSci., vol. 8, no. 1, pp. 72 – 80, Jul. 2017.
DOI: 10.1007/s12668-017-0423-1 - H. T. Michels, S. A. Wilks, J. O. Noyce, and C. W. Keevil, “Copper alloys for human infectious disease control,” in Proc. Materials Science and Technology Conference (MS&T__05), Pittsburgh (PA), 2005, pp. 1546 – 2498.
Retrieved from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.559.9650&rep=rep1&type=pdf; Retrieved on: Aug. 15, 2018 - M. Raffi et al., “Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli,” Ann. Microbiol., vol. 60, no. 1, pp. 75 – 80, Feb. 2010.
DOI: 10.1007/s13213-010-0015-6 - G. Faúndez, M. Troncoso, P. Navarrete, G. Figueroa, “Antimicrobial activity of copper surfaces against suspensions of Salmonella enterica and Campylobacter jejuni,” BMC Microbiol., vol. 4, no. 1, p. 19, Apr. 2004.
DOI: 10.1186/1471-2180-4-19 PMid: 15119960 PMCid: PMC411034 - P. A. Tran, T. J. Webster, “Selenium nanoparticles inhibit Staphylococcus aureus growth,” Int. J. Nanomedicine, vol. 6, pp. 1553 – 1558, Jul. 2011.
DOI: 10.2147/IJN.S21729 PMid: 21845045 PMCid: PMC3152473 - S. Mehtar, I. Wiid, S. D. Todorov, “The antimicrobial activity of copper and copper alloys against nosocomial pathogens and Mycobacterium tuberculosis isolated from healthcare facilities in the Western Cape: an in-vitro study,” J. Hosp. Infect., vol. 68, no. 1, pp. 45 – 51, Jan. 2008.
DOI: 10.1016/j.jhin.2007.10.009 PMid: 18069086 - B. L. Meatherall, D. Gregson, T. Ross, J. D. Pitout, and K. B. Laupland, “Incidence, risk factors, and outcomes of Klebsiella pneumoniae bacteremia,” Am. J. Med., vol. 122, no. 9, pp. 866 – 873, Sep. 2009.
DOI: 10.1016/j.amjmed.2009.03.034 PMid: 19699383 - S. S. Magill et al., “Multistate point-prevalence survey of health care–associated infections,” N. Engl. J. Med., vol. 370, no. 13, pp. 1198 – 1208, Mar. 2014.
DOI: 10.1056/NEJMoa1306801 PMid: 24670166 PMCid: PMC4648343 - K. Hirukawa et al., “Effect of tensile force on the expression of IGF-I and IGF-I receptor in the organ-cultured rat cranial suture,” Arch. Oral Biol., vol. 50, no. 3, pp. 367 – 372, Mar. 2005.
DOI: 10.1016/j.archoralbio.2004.07.003 PMid: 15740717 - L. Zhu, J. Elguindi, C. Rensing, S. Ravishankar, “Antimicrobial activity of different copper alloy surfaces against copper resistant and sensitive Salmonella enterica,” Food Microbiol., vol. 30, no. 1, pp. 303 – 310, May 2012.
DOI:10.1016/j.fm.2011.12.001 PMid: 22265316 - Y. Z. Wan et al., “Modification of medical metals by ion implantation of copper,” Appl. Surf. Sci., vol. 253, no. 24, pp. 9426 – 9429, Oct. 2007.
DOI: 10.1016/j.apsusc.2007.06.031 - J. Liu et al., “Effect of Cu content on the antibacterial activity of titanium - copper sintered alloys,” Mater. Sci. Eng. C, vol. 35, pp. 392 – 400, Feb. 2014.
DOI: 10.1016/j.msec.2013.11.028 PMid: 24411393 - M. I. Baena, M. C. Mµrquez, V. Matres, J. Botella, A. Ventosa, “Bactericidal activity of copper and niobium – alloyed austenitic stainless steel,” Curr. Microbiol., vol. 53, no. 6, pp. 491 – 495, Dec. 2006.
DOI: 10.1007/s00284-006-0193-4 PMid: 17072670 - Y. Huang et al., “Antibacterial efficacy, corrosion resistance, and cytotoxicity studies of copper-substituted carbonated hydroxyapatite coating on titanium substrate,” J. Mater. Sci., vol. 50, no. 4, pp. 1688 – 1700, Nov. 2015.
DOI: 10.1007/s10853-014-8730-1 - W. Chen et al., “In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating,” Biomaterials, vol. 27, no. 32, pp. 5512 – 5517, Nov. 2006.
DOI: 10.1016/j.biomaterials.2006.07.003 PMid: 16872671 - Y. Li, J. Ho, C. P. Ooi, “Antibacterial efficacy and cytotoxicity studies of copper (II) and titanium (IV) substituted hydroxyapatite nanoparticles,” Mater. Sci. Eng. C, vol. 30, no. 8, pp. 1137 – 1144, Oct. 2010.
DOI: 10.1016/j.msec.2010.06.011 - J. P. Ruparelia, A. K. Chatterjee, S. P. Duttagupta, S. Mukherji, “Strain specificity in antimicrobial activity of silver and copper nanoparticles,” Acta Biomater., vol. 4, no. 3, pp. 707 – 716, May 2008.
DOI: 10.1016/j.actbio.2007.11.006 PMid: 18248860 - T. J. Beveridge, R. G. Murray, “Sites of metal deposition in the cell wall of Bacillus subtilis,” J. Bacteriol., vol. 141, no. 2, pp. 876 – 887, Feb. 1980.
PMid: 6767692 PMCid: PMC293699 - D. Das, B. C. Nath, P. Phukon, S. K. Dolui, “Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles,” Colloids Surfaces B Biointerfaces, vol. 101, pp. 430 – 433, Jan. 2013.
DOI: 10.1016/j.colsurfb.2012.07.002 PMid: 23010051 - G. D. M. R. Dabera et al.,”Retarding oxidation of copper nanoparticles without electrical isolation and the size dependence of work function,” Nat. Commun., vol. 8, no. 1, p. 1894, Dec. 2017.
DOI: 10.1038/s41467-017-01735-6 PMid: 29196617 PMCid: PMC5711799 - U. Gröber, J. Schmidt, and K. Kisters, “Magnesium in prevention and therapy,” Nutrients, vol. 7, no. 9, pp. 8199 – 8226, Sep. 2015.
DOI: 10.3390/nu7095388 PMid: 26404370 PMCid: PMC4586582 - L. Ren, X. Lin, L. Tan, and K. Yang, “Effect of surface coating on antibacterial behavior of magnesium based metals,” Mater. Lett., vol. 65, no. 23-24, pp. 3509 – 3511, Dec. 2011.
DOI: 10.1016/j.matlet.2011.07.109 - D. A. Robinson, R. W. Griffith, D. Shechtman, R. B. Evans, M. G. Conzemius, “In vitro antibacterial properties of magnesium metal against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus,” Acta Biomater., vol. 6, no. 5, pp. 1869 – 1877, May 2010.
DOI: 10.1016/j.actbio.2009.10.007 PMid: 19818422 - J. Y. Lock et al., “Antimicrobial properties of biodegradable magnesium for next generation ureteral stent applications”, in Proc. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012 (EMBC), San Diego, CA, USA, 2012 pp. 1378 – 1381.
DOI: 10.1109/EMBC.2012.6346195 PMid: 23366156 - M. Pourbaix, “Atlas of electrochemical equilibria in aqueous solutions”, 2nd English Ed., Houston, Tex., USA: National Association of Corrosion Engineers, 1974.
- M. P. Staiger, A. M. Pietak, J. Huadmai, and G. Dias, “Magnesium and its alloys as orthopedic biomaterials: a review,” Biomaterials, vol. 27, no. 9, pp. 1728 – 1734, Mar. 2006.
DOI: 10.1016/j.biomaterials.2005.10.003 PMid: 16246414 - G. He et al., “Addition of Zn to the ternary Mg-Ca-Sr alloys significantly improves their antibacterial property,” J. Mater. Chem. B, vol. 3, no. 32, pp. 6676 – 6689, Aug. 2015.
DOI: 10.1039/C5TB01319D PMid: 26693010 PMCid: PMC4675164 - A. H. Martinez Sanchez, B. J. C. Luthringer, F. Feyerabend, R. Willumeit, “Mg and Mg alloys: how comparable are in vitro and in vivo corrosion rates ? - A Review,” ACTA Biomater., vol. 13, pp. 16 – 31, Feb. 2015.
DOI: 10.1016/j.actbio.2014.11.048 PMid: 25484334 - D. Williams, “New interests in magnesium,” Med. Device Technol., vol. 17, no. 3, pp. 9 – 10, Apr. 2006.
PMid: 16736656 - Y. Li et al., “Antibacterial properties of magnesium in vitro and in an in vivo model of implant-associated methicillin-resistant Staphylococcus aureus infection,” Antimicrob. Agents Chemother., vol. 58, no. 12, pp. 7586 – 7591, Dec. 2014.
DOI: 10.1128/AAC.03936-14 PMid: 25288077 PMCid: PMC4249557 - N. S. Morris, D. J. Stickler, and R. J. C. Mclean, “The development of bacterial biofilms on indwelling urethral catheters,” World J. Urol., vol. 17, no. 6, pp. 345 – 350, Dec. 1999.
DOI: 10.1007/s003450050159 PMid: 10654364 - P. Hou et al., “Reduced antibacterial property of metallic magnesium in vivo,” Biomed. Mater., vol. 12, no. 1, p. 015010, Dec. 2016.
DOI: 10.1088/1748-605X/12/1/015010 PMid: 27934788 - P. L. Miller, B. A. Shaw, R. G. Wendt, W. C. Moshier, “Assessing the corrosion resistance of nonequilibrium magnesium-yttrium alloys,” Corrosion, vol. 51, no. 12, pp. 922 – 931, Dec. 1995.
DOI: 10.5006/1.3293568 - A. Feng, Y. Han, “The microstructure, mechanical and corrosion properties of calcium polyphosphate reinforced ZK60A magnesium alloy composites,” J. Alloys Compd., vol. 504, no. 2, pp. 585 – 593, Aug. 2010.
DOI: 10.1016/j.jallcom.2010.06.013 - L. Li, J. Gao, Y. Wang, “Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid,” Surf. Coatings Technol., vol. 185, no. 1, pp. 92 – 98, Jul. 2004.
DOI: 10.1016/j.surfcoat.2004.01.004 - A. S. Prasad, “Zinc: an overview,” Nutrition, vol. 11, no. 1, pp. 93 – 99, Jan-Feb. 1995.
PMid: 7749260 - M. Valko, H. Morris, M. T. D. Cronin, “Metals, Toxicity and Oxidative Stress,” Curr. Med. Chem., vol. 12, no. 10, pp. 1161 – 1208, May 2005.
DOI: 10.2174/0929867053764635 PMid: 15892631 - J. S. van der Hoeven, D. Cummins, M. J. M. Schaeken, and F. J. G. van der Ouderaa, “The effect of chlorhexidine and zinc/triclosan mouthrinses on the production of acids in dental plaque,” Caries Res., vol. 27, no. 4, pp. 298-302, 1993.
DOI: 10.1159/000261554 PMid: 8402805 - M. Burguera-Pascu, A. Rodríguez-Archilla, P. Baca, “Substantivity of zinc salts used as rinsing solutions and their effect on the inhibition of Streptococcus mutans,” J. Trace Elem. Med. Biol., vol. 21, no. 2, pp. 92-101, Jun. 2007.
DOI: 10.1016/j.jtemb.2006.12.003 PMid: 17499148 - H. Hu et al., “Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium,” Acta Biomater., vol. 8, no. 2, pp. 904 – 915, Feb. 2012.
DOI: 10.1016/j.actbio.2011.09.031 PMid: 22023752 - B. H. Zhao et al., “Effect of Zn content on cytoactivity and bacteriostasis of micro-arc oxidation coatings on pure titanium,” Surf. Coatings Technol., vol. 228, pp. 428 – 432, Aug. 2013.
DOI: 10.1016/j.surfcoat.2012.05.037 - H. J. Seo, Y. E. Cho, T. Kim, H. I. Shin, I. S. Kwun, “Zinc may increase bone formation through stimulating cell proliferation , alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells,” Nutr. Res. Pract., vol. 4, no. 5, pp. 356 – 361, Oct. 2010.
DOI: 10.4162/nrp.2010.4.5.356 PMid: 21103080 PMCid: PMC2981717 - H. Kawamura et al., “Stimulatory effect of zinc-releasing calcium phosphate implant on bone formation in rabbit femora,” J. Biomed. Mater. Res. Part A, vol. 50, no. 2, pp. 184 – 190, May 2000.
DOI: 10.1002/(sici)1097-4636(200005)50:2<184::aid-jbm13>3.0.co;2-3 PMid: 10679683 - Y. Reyes-Vidal et al., “Electrodeposition, characterization, and antibacterial activity of zinc/silver particle composite coatings,” Appl. Surf. Sci., vol. 342, pp. 34 – 41, Jul. 2015.
DOI: 10.1016/j.apsusc.2015.03.037 - K. P. Tank, K. S. Chudasama, V. S. Thaker, M. J. Joshi, “Pure and zinc doped nano-hydroxyapatite: synthesis, characterization, antimicrobial and hemolytic studies,” J. Cryst. Growth, vol. 401, pp. 474 – 479, Sep. 2014.
DOI: 10.1016/j.jcrysgro.2014.01.062 - N. Iqbal et al., “Characterization, antibacterial and in vitro compatibility of zinc–silver doped hydroxyapatite nanoparticles prepared through microwave synthesis,” Ceram. Int., vol. 40, no. 3, pp. 4507 – 4513, Apr. 2014.
DOI: 10.1016/j.ceramint.2013.08.125 - Y. Huang et al., “Osteoblastic cell responses and antibacterial efficacy of Cu/Zn co-substituted hydroxyapatite coatings on pure titanium using electrodeposition method,” RSC Adv., vol. 5, no. 22, pp. 17076 – 17086, Feb. 2015.
DOI: 10.1039/c4ra12118j - S. Kurokawa, M. J. Berry, “Selenium. Role of essential metalloid in health,” in Interrelations between Essentials Metal Ions and Human Diseases, vol. 13, Dordrecht, Netherlands: Springer, 2013, pp. 499 – 534.
DOI: 10.1007/978-94-007-7500-8_16 PMid: 24470102 PMCid: PMC4339817 - C. D. Davis, P. A. Tsuji, and J. A. Milner, “Selenoproteins and cancer prevention,” Annu. Rev. Nutr., vol. 32, pp. 73 – 95, Aug. 2012.
DOI: 10.1146/annurev-nutr-071811-150740 PMid: 22404120 - K. Schwarz and C. M. Foltz, “Selenium as an integral part of factor 3 against dietary necrotic liver degeneration,” J. Am. Chem. Soc., vol. 79, no. 12, pp. 3292 – 3293, Jun. 1957.
DOI: 10.1021/ja01569a087 - M. Navarro-Alarcon and C. Cabrera-Vique, “Selenium in food and the human body: a review,” Sci. Total Environ., vol. 400, no. 1-3, pp. 115 – 141, Aug. 2008.
DOI: 10.1016/j.scitotenv.2008.06.024 PMid: 18657851 - C. Rodríguez-Valencia et al., “Novel selenium-doped hydroxyapatite coatings for biomedical applications,” J. Biomed. Mater. Res. Part A, vol. 101, no. 3, pp. 853 – 861, Mar. 2013.
DOI: 10.1002/jbm.a.34387 PMid: 22968925 - J. Lubinski et al., “Serum selenium levels predict survival after breast cancer,” Breast Cancer Res. Treat., vol. 167, no. 2, pp. 591 – 598, Jan. 2018.
DOI:10.1007/s10549-017-4525-9 PMid: 29043463 - P. D. Whanger, “Selenium and its relationship to cancer: an update,” Br. J. Nutr., vol. 91, no. 1, pp. 11 – 28, Jan. 2004.
DOI: 10.1079/bjn20031015 PMid: 14748935 - G. F. Combs, “Selenium in global food systems,” Br. J. Nutr., vol. 85, no. 5, pp. 517 – 547, May 2001.
DOI: 10.1079/bjn2000280 PMid: 11348568 - C. D. Thomson, “SELENIUM | Physiology,” in Encyclopedia of Food Sciences and Nutrition, B. Caballero, L. C. Trugo, P. M. Finglas, Eds., 2th ed., London, UK: Academic Press, 2003, pp. 5117 – 5124.
DOI: 10.1016/B0-12-227055-X/01061-0 - M. C. Ledesma et al., “Selenium and Vitamin E for prostate cancer: post-SELECT (Selenium and Vitamin E Cancer Prevention Trial) status,” Mol. Med., vol. 7, no. 1-2, pp. 134 – 143, Jan-Feb. 2011.
DOI: 10.2119/molmed.2010.00136 PMid: 20882260 PMCid: PMC3022975 - Environmental health criteria 58: selenium, International programme on chemical safety, WHO, Geneva, Switzerland, 1987.
Retrieved from: http://www.inchem.org/documents/ehc/ehc/ehc58.html Retrieved on: Jul. 18, 2018 - G. Q. Yang, S. Z. Wang, R. H. Zhou, S. Z. Sun, “Endemic selenium intoxication of humans in China,” Am. J. Clin. Nutr., vol. 37, no. 5, pp. 872 – 881, May 1983.
DOI: 10.1093/ajcn/37.5.872 PMid: 6846228 - E. Kheradmand et al., “The antimicrobial effects of selenium nanoparticle-enriched probiotics and their fermented broth against Candida albicans,” DARU J. Pharm. Sci., vol. 22, no. 1, pp. 1 – 6, Jun. 2014.
DOI: 10.1186/2008-2231-22-48 PMid: 24906455 PMCid: PMC4060857 - Q. Wang, T. J. Webster, “Nanostructured selenium for preventing biofilm formation on polycarbonate medical devices,” J. Biomed. Mater. Res. Part A, vol. 100, no. 12, pp. 3205 – 3210, Dec. 2012.
DOI: 10.1002/jbm.a.34262 PMid: 22707390 - J. Holinka, M. Pilz, B. Kubista, E. Presterl, R. Windhager, “Effects of selenium coating of orthopaedic implant surfaces on bacterial adherence and osteoblastic cell growth,” Bone Jt. J, vol. 95, no. 5, pp. 678 – 682, May 2013.
DOI:10.1302/0301-620X.95B5.31216 PMid: 23632681 - S. Pilathadka, D. Vahalová, T. Vosáhlo, “The Zirconia: a new dental ceramic material. An Overview,” Prague Med Rep, vol. 108, no. 1, pp. 5 – 12, 2007.
PMid: 17682722 - S. B. Farina, A. G. Sanchez, S. Ceré, “Effect of surface modification on the corrosion resistance of Zr-2.5Nb as material for permanent implants,” Procedia Mater. Sci., vol. 8, pp. 1166 – 1173, 2015.
DOI: 10.1016/j.mspro.2015.04.181 - T. Vagkopoulou, S. O. Koutayas, P. Koidis, “Zirconia in dentistry: Part 1. Discovering the nature of an upcoming bioceramic,” Eur. J. Esthet. Dent.
|