Volume 3, Issue 2

Topical review

Biomaterials

ANTIBACTERIAL ACTIVITY OF METALS WITH MEDICAL APPLICATION

Iva Slavova, Denitsa Kiradzhiyska, Rositsa Mancheva

Pages: 71-87

DOI: 10.21175/RadJ.2018.02.013

Received: 24 AUG 2018, Received revised: 10 DEC 2018, Accepted: 12 DEC 2018, Published online: 27 DEC 2018

The most common classification of certain biomaterials is proposed according to their nature, biological behavior, and application specificity. Data on the antibacterial activity of the metals Ag, Cu, Mg, Zn, Se, and Zr are summarized. A brief historical review of their use in the treatment of various infections has been made. The mechanisms of antibacterial action and the role of some implant surface modifications are discussed.
  1. F. J. O’Brien, “Biomaterials & scaffolds for tissue engineering,” Materials today, vol. 14, no. 3, pp. 88 – 95 , Mar. 2011.
    DOI: 10.1016/S1369-7021(11)70058-X
  2. T. Dikova, “Nano-engineered coatings on titanium implants,” Scr. Sci. Medica, vol. 44, no. 2, pp. 23 – 25, Dec. 2012.
    DOI: 10.14748/ssm.v44i2.352
  3. Y. Qin, “Textiles for implants and regenerative medicine,” in Medical Textile Materials, Cambridge, UK: Elsevier, 2016, ch. 10, sec. 10.2, pp. 133 – 135.
    DOI: 10.1016/C2014-0-04473-5
  4. M. Geetha, A. K. Singh, R. Asokamani, and A. K. Gogia, “Ti based biomaterials, the ultimate choice for orthopaedic implants-a review,” Prog. Mater. Sci., vol. 54, no. 3, pp. 397 – 425, May 2009.
    DOI: 10.1016/j.pmatsci.2008.06.004
  5. J. Venkatesan, S. K. Kim, “Chitosan composites for bone tissue engineering-an overview,” Mar. Drugs, vol. 8, no. 8, pp. 2252 – 2266, Aug. 2010.
    DOI: 10.3390/md8082252
    PMid: 20948907
    PMCid: PMC2953403
  6. D. F. Williams, “On the mechanisms of biocompatibility,” Biomaterials, vol. 29, no. 20, pp. 2941 – 2953, Jul. 2008.
    DOI: 10.1016/j.biomaterials.2008.04.023
    PMid: 18440630
  7. T. M. Sridhar, S. Rajeswari, “Biomaterials corrosion,” Corros. Rev., vol. 27, no. suppl, pp. 287 – 332, Jan. 2009.
    DOI: 10.1515/corrrev.2009.27.s1.287
  8. J. Chevalier, L. Gremillard, “Ceramics for medical applications: a picture for the next 20 years,” J. Eur. Ceram. Soc., vol. 29, no. 7, pp. 1245 – 1255, Apr. 2009.
    DOI: 10.1016/j.jeurceramsoc.2008.08.025
  9. D. F. Williams, Definitions in Biomaterials: Proceedings of a Consensus Conference of the European Society for Biomaterials, Chester, UK: Elsevier, 1987.
  10. E. S. Park, Biomaterials in medical devices, Medtronic, Inc., Minneapolis (MN), USA.
    Retrieved from: http://insegnamento/175779-Scienza-E-Tecnologia-Dei-Biomateriali/56640-Medtronic;
    Retrieved on: Aug. 15, 2018
  11. J. R. Jones and L. L. Hench, “Biomedical materials for new millennium: perspective on the future,” Mater. Sci. Technol., vol. 17, no. 8, pp. 891 – 900, Jul. 2001.
    DOI: 10.1179/026708301101510762
  12. J. R. Jones, “Scaffolds for tissue engineering” in Biomaterials, artificial organs and tissue engineering, Cambridge, UK: Elsevier, 2005, ch. 4, sec. 19, 201 – 214.
    DOI: 10.1533/9781845690861.4.201
  13. L. L. Hench, “Biomaterials: a forecast for the future,” Biomaterials, vol. 19, no. 16, pp. 1419 – 1423, Aug. 1998.
    DOI: 10.1016/s0142-9612(98)00133-1
    PMid: 9794512
  14. H. Hermawan, “Biodegradable metals: state of art,” in Biodegradable Metals, Heildelberg, Germany: Springer, 2012, ch. 2, pp. 13 – 22.
    DOI: 10.1007/978-3-642-31170-3_2
  15. M. Bohner, “Resorbable biomaterials as bone graft substitutes,” Mater. Today, vol. 13, no. 1-2, pp. 24 – 30, Jan-Feb. 2010.
    DOI: 10.1016/S1369-7021(10)70014-6
  16. X. N. Gu, X. H. Xie, N. Li, Y. F. Zheng, and L. Qin, “In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal,” Acta Biomater., vol. 8, no. 6, pp. 2360 – 2374, Jul. 2012.
    DOI: 10.1016/j.actbio.2012.02.018
    PMid: 22387336
  17. P. Aramwit, “Introduction to biomaterials for wound healing,” in Wound healing biomaterials, vol. 2, M. S. Agren, Ed., Cambridge, UK: Woodhead Publishing, 2016, ch. 1, pp. 3 – 38.
    DOI: 10.1016/B978-1-78242-456-7.00001-5
  18. H. Chai et al., “Antibacterial effect of 317L stainless steel contained copper in prevention of implant-related infection in vitro and in vivo,” J. Mater. Sci. Mater. Med., vol. 22, no. 11, pp. 2525 – 2535, Nov. 2011.
    DOI: 10.1007/s10856-011-4427-z
    PMid: 21870079
  19. Antimicrobial resistance surveillance in Europe, Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net) 2011, European Center for Disease Prevention and Control, Stockholm, Sweden, 2012.
    DOI: 10.2900/6551
  20. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics, WHO, Geneva, Switzerland, 2017.
    Retrieved from: http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf
    Retrieved on: Jul. 25, 2018
  21. K. H. Liao, K. L. Ou, H. C. Cheng, C. T. Lin, and P. W. Peng, “Effect of silver on antibacterial properties of stainless steel,” Appl. Surf. Sci., vol. 256, no. 11, pp. 3641 – 3645, Mar. 2010.
    DOI: 10.1016/j.apsusc.2010.01.001
  22. J. W. Costerton, P. S. Stewart, and E. P. Greenberg, “Bacterial biofilms: a common cause of persistent infections,” Science, vol. 284, no. 5418, pp. 1318 – 1322, May 1999.
    DOI: 10.1126/science.284.5418.1318
    PMid: 10334980
  23. P. Stephens, “Antibiotic resistance now ‘global threat’, WHO warns,” BBC News, Apr. 30, 2014.
    Retrieved from: https://www.bbc.co.uk/news/health-27204988;
    Retrieved on: Aug. 5, 2018
  24. P. Taylor et al., “Antibacterial properties of nine pure metals: a laboratory study using Staphylococcus aureus and Escherichia coli,” Biofouling, vol. 26, no. 7, pp. 37 – 41, Oct. 2010.
    DOI: 10.1080/08927014.2010.527000
    PMid: 20938849
  25. M. Yoshinari, Y. Oda, T. Kato, and K. Okuda, “Influence of surface modifications to titanium on antibacterial activity in vitro,” Biomaterials, vol. 22, no. 14, pp. 1 – 2, Jul. 2001.
    DOI: 10.1016/s0142-9612(00)00392-6
    PMid: 11426884
  26. S. H. Jeong, Y. Y. Sang, and C. Y. Sung, “The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers,” J. Mater. Sci., vol. 40, no. 20, pp. 5407 – 5411, Oct. 2005.
    DOI: 10.1007/s10853-005-4339-8
  27. R. L. Davies and S. F. Etris, “The development and functions of silver in water purification and disease control,” Catal. Today, vol. 36, no. 1, pp. 107 – 114, Apr. 1997.
    DOI: 10.1016/s0920-5861(96)00203-9
  28. S. W. Wijnhoven et al., “Nano-silver-a review of available data and knowledge gaps in human and environmental risk assessment,” Nanotoxicology, vol. 3, no. 2, pp. 109 – 138, Jun. 2009.
    DOI: 10.1080/17435390902725914
  29. M. K. Rai, S. D. Deshmukh, A. P. Ingle, and A. K. Gade, “Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria,” J. Appl. Microbiol., vol. 112, no. 5, pp. 841 – 852, May 2012.
    DOI: 10.1111/j.1365-2672.2012.05253.x
    PMid: 22324439
  30. B. S. Atiyeh, M. Costagliola, S. N. Hayek, and S. A. Dibo, “Effect of silver on burn wound infection control and healing: review of the literature,” Burns, vol. 33, no. 2, pp. 139 – 148, Mar. 2007.
    DOI: 10.1016/j.burns.2006.06.010
    PMid: 17137719
  31. M. C. Fung and D. L. Bowen, “Silver products for medical indications: risk-benefit assessment,” J. Toxicol. Clin. Toxicol., vol. 34, no. 1, pp. 119 – 126, Jan. 1996.
    DOI: 10.3109/15563659609020246
    PMid: 8632503
  32. M. Rai, A. P. Ingle, and S. Medici, Biomedical Applications of Metals, Basel, Switzerland: Springer International Publishing, 2018.
    DOI: 10.1007/978-3-319-74814-6
  33. Panáček et al., “Antifungal activity of silver nanoparticles against Candida spp.,” Biomaterials, vol. 30, no. 31, pp. 6333 – 6340, Oct. 2009.
    DOI: 10.1016/j.biomaterials.2009.07.065
    PMid: 19698988
  34. A. E. Mohammed, “Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles mediated by Eucalyptus camaldulensis leaf extract,” Asian Pac. J. Trop. Biomed., vol. 5, no. 5, pp. 382 – 386, May 2015.
    DOI: 10.1016/S2221-1691(15)30373-7
  35. W. J. Schreurs and H. Rosenberg, “Effect of silver ions on transport and retention of phosphate by Escherichia coli,” J. Bacteriol., vol. 152, no. 1, pp. 7 – 13, Oct. 1982.
    PMid: 6749823
    PMCid: PMC221367
  36. M. Rai et al., “Nanosilver: an inorganic nanoparticle with myriad potential applications,” Nanotechnol. Rev., vol. 3, no. 3, pp. 281 – 309, Apr. 2014.
    DOI: 10.1515/ntrev-2014-0001
  37. A. B. Lansdown, “Silver I: its antibacterial properties and mechanism of action,” J. Wound Care, vol. 11, no. 4, pp. 125 – 130, Apr. 2002.
    DOI: 10.12968/jowc.2002.11.4.26389
    PMid: 11998592
  38. Y. Yakabe, T. Sano, H. Ushio, and T. Yasunaga, “Kinetic studies of the interaction between silver ion and deoxyribonucleic acid,” Chem. Lett., vol. 9, no. 4, pp. 373 – 376, Apr. 1980.
    DOI: 10.1246/cl.1980.373
  39. G. A. Fielding, M. Roy, A. Bandyopadhyay, S. Bose, “Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings,” Acta Biomater., vol. 8, no. 8, pp. 3144 – 3152, Aug. 2012.
    DOI: 10.1016/j.actbio.2012.04.004
    PMid: 22487928
    PMCid: PMC3393112
  40. G. V. Vimbela, S. M. Ngo, C. Fraze, L. Yang, D. A. Stout, “Antibacterial properties and toxicity from metallic nanomaterials,” Int. J. Nanomedicine, vol. 12, pp. 3941 – 3965, May 2017.
    DOI: 10.2147/IJN.S134526
    PMid: 28579779
    PMCid: PMC5449158
  41. W. Zhang, Y. Li, J. Niu, Y. Chen, “Photogeneration of reactive oxygen species on uncoated silver, gold, nickel, and silicon nanoparticles and their antibacterial effects,” Langmuir, vol. 29, no. 15, pp. 4647 – 4651, Apr. 2013.
    DOI: 10.1021/la400500t
    PMid: 23544954
  42. R. B. K. Wakshlak, R. Pedahzur, D. Avnir, “Antibacterial activity of silver-killed bacteria: the" zombies" effect,” Scientific reports, vol. 5, no. 9555, Apr. 2015.
    DOI: 10.1038/srep09555
    PMid: 25906433
    PMCid: PMC5386105
  43. K. Das, S. Bose, A. Bandyopadhyay, B. Karandikar. B. L. Gibbins, “Surface coatings for improvement of bone cell materials and antimicrobial activities of Ti implants,” J. Biomed. Mater. Res. Part B Appl. Biomater., vol. 87, no. 2, pp. 455 – 460, Nov. 2008.
    DOI: 10.1002/jbm.b.31125
    PMid: 18481793
  44. R. Mittal, S. Aggarwal, S. Sharma, S. Chhibber, K. Harjai, “Urinary tract infections caused by Pseudomonas aeruginosa: a minireview,” J. Infect. Public Health, vol. 2, no. 3, pp. 101 – 111, 2009.
    DOI: 10.1016/j.jiph.2009.08.003
    PMid: 20701869
  45. K. G. Kerr, A. M. Snelling, “Pseudomonas aeruginosa: a formidable and ever-present adversary,” J. Hosp. Infect., vol. 73, no. 4, pp. 338 – 344, Dec. 2009.
    DOI: 10.1016/j.jhin.2009.04.020
    PMid: 19699552
  46. B. Le Ouay and F. Stellacci, “Antibacterial activity of silver nanoparticles: a surface science insight,” Nano Today, vol. 10, no. 3, pp. 339 – 354, Jun. 2015.
    DOI: 10.1016/j.nantod.2015.04.002
  47. R. Salomoni, P. Léo, A. F. Montemor, B. G. Rinaldi, M. F. A. Rodrigues, “Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa,” Nanotechnol. Sci. Appl., vol. 10, pp. 115 – 121, Jun. 2017.
    DOI: 10.2147/NSA.S133415
    PMid: 28721025
    PMCid: PMC5499936
  48. G. A. Martinez-Castanon, N. Nino-Martinez, F. Martinez-Gutierrez, J. R. Martinez-Mendoza, F. Ruiz, “Synthesis and antibacterial activity of silver nanoparticles with different sizes,” J. Nanoparticle Res., vol. 10, no. 8, pp. 1343 – 1348, Jul. 2008.
    DOI: 10.1007/s11051-008-9428-6
  49. J. Nasrin Begam, “Biosynthesis and characterization of silver nanoparticles (AgNPs) using marine bacteria against certain human pathogens,” International Journal of Advances in Scientific Research, vol. 16, no. 10, pp. 2346 – 2353, Aug. 2016.
    DOI: 10.7439/ijasr.v2i7.3514
  50. M. R. Nateghi, H. Hajimirzababa, “Effect of silver nanoparticles morphologies on antimicrobial properties of cotton fabrics,” J. Text. Inst., vol. 105, no. 8, pp. 806 – 813, Jan. 2014.
    DOI: 10.1080/00405000.2013.855377
  51. I. Sondi and B. Salopek-Sondi, “Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria,” J. Colloid Interface Sci., vol. 275, no. 1, pp. 177 – 182, Jul. 2004.
    DOI: 10.1016/j.jcis.2004.02.012
    PMid: 15158396
  52. J. S. Kim et al., “Antimicrobial effects of silver nanoparticles,” Nanomedicine Nanotechnology, Biol. Med., vol. 3, no. 1, pp. 95 – 101, Mar. 2007.
    DOI: 10.1016/j.nano.2006.12.001
    PMid: 17379174
  53. J. Thiel et al., “Antibacterial properties of silver-doped titania,” Small, vol. 3, no. 5, pp. 799 – 803, May 2007.
    DOI: 10.1002/smll.200600481
    PMid: 17340662
  54. G. Hu et al., “Antibacterial activity of silver nanoparticles with different morphologies as well as their possible antibacterial mechanism,” Appl. Phys. A, vol. 122, no. 10, pp. 874 – 880, Sep. 2016.
    DOI: 10.1007/s00339-016-0395-y
  55. S. Shrivastava et al., “Characterization of enhanced antibacterial effects of novel silver nanoparticles,” Nanotechnology, vol. 18, no. 22, p. 225103, May 2007.
    DOI: 10.1088/0957-4484/18/22/225103
  56. H. H. Lara, N. V. Ayala-Núñez, L. D. C. I. Turrent, C. R. Padilla, “Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria,” World J. Microbiol. Biotechnol., vol. 26, no. 4, pp. 615 – 621, Oct. 2010.
    DOI: 10.1007/s11274-009-0211-3
  57. J. J. Buckley, A. F. Lee, and K. Wilson, “Hydroxyapatite supported antibacterial Ag3PO4 nanoparticles,” J. Mater. Chem., vol. 20, no. 37, pp. 8056 – 8063, Oct. 2010.
    DOI: 10.1039/c0jm01500h
  58. S. Sohrabnezhad, A. Pourahmad, M. J. M. Moghaddam, A. Sadeghi, “Study of antibacterial activity of Ag and Ag2CO3 nanoparticles stabilized over montmorillonite,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 136, pp. 1728-1733, Feb. 2015.
    DOI: 10.1016/j.saa.2014.10.074
    PMid: 25467663
  59. J. J. Buckley, P. L. Gai, A. F. Lee, L. Olivi, K. Wilson, “Silver carbonate nanoparticles stabilised over alumina nanoneedles exhibiting potent antibacterial properties,” Chem. Commun., vol. 34, pp. 4013 – 4015, Sep. 2008.
    DOI: 10.1039/b809086f
    PMid: 18758610
  60. A. Besinis, T. De Peralta, R. D. Handy, “The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays,” Nanotoxicology, vol. 8, no. 1, pp. 1 – 16, Feb. 2014.
    DOI: 10.3109/17435390.2012.742935
    PMid: 23092443
    PMCid: PMC3878355
  61. J. Liu et al., “The antibacterial properties and biocompatibility of a Ti-Cu sintered alloy for biomedical application,” Biomed. Mater., vol. 9, no. 2, p. 025013, Apr. 2014.
    DOI: 10.1088/1748-6041/9/2/025013
    PMid: 24565798
  62. S. Kittler, C. Greulich, J. Diendorf, M. Koller, M. Epple, “Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions,” Chem. Mater., vol. 22, no. 16, pp. 4548 – 4554, Aug. 2010.
    DOI: 10.1021/cm100023p
  63. S. Chernousova, M. Epple, “Silver as antibacterial agent: ion, nanoparticle, and metal,” Angew. Chemie Int. Ed., vol. 52, no. 6, pp. 1636 – 1653, Feb. 2013.
    DOI: 10.1002/anie.201205923
    PMid: 23255416
  64. A. R. Gliga, S. Skoglund, I. O. Wallinder, B. Fadeel, H. L. Karlsson, “Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release,” Part. Fibre Toxicol., vol. 11, no. 1, pp. 1 – 17, Feb. 2014.
    DOI: 10.1186/1743-8977-11-11
    PMid: 24529161
    PMCid: PMC3933429
  65. L. Li et al., “Controllable synthesis of monodispersed silver nanoparticles as standards for quantitative assessment of their cytotoxicity,” Biomaterials, vol. 33, no. 6, pp. 1714 – 1721, Feb. 2012.
    DOI: 10.1016/j.biomaterials.2011.11.030
    PMid: 22137123
  66. A. R. Shahverdi, A. Fakhimi, H. R. Shahverdi, S. Minaian, “Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli,” Nanomed.: Nanotechnol., Biol. Med., vol. 3, no. 2, pp. 168 – 171, Jun. 2007.
    DOI: 10.1016/j.nano.2007.02.001
    PMid: 17468052
  67. V. Dhand et al., “Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity,” Mater. Sci. Eng. C, vol. 58, pp. 36 – 43, Jan. 2016.
    DOI: 10.1016/j.msec.2015.08.018
    PMid: 26478284
  68. F. K. Alsammarraie, W. Wang, P. Zhou, A. Mustapha, and M. Lin, “Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities,” Colloids. Surf. B. Biointerfaces., vol. 171, pp. 398 – 405, Nov. 2018.
    DOI: 10.1016/j.colsurfb.2018.07.059
    PMid: 30071481
  69. S. Husain, M. Sardar, and T. Fatma, “Screening of cyanobacterial extracts for synthesis of silver nanoparticles,” World J. Microbiol. Biotechnol., vol. 31, no. 8, pp. 1279 – 1283, May 2015.
    DOI: 10.1007/s11274-015-1869-3
  70. M. Ghaedi, M. Yousefinejad, M. Safarpoor, H. Z. Khafri, M. K. Purkait, “Rosmarinus officinalis leaf extract mediated green synthesis of silver nanoparticles and investigation of its antimicrobial properties,” J. Ind. Eng. Chem., vol. 31, pp. 167 – 172, Nov. 2015.
    DOI: 10.1016/j.jiec.2015.06.020
  71. M. Soltanzadeh, M. Soltani Nejad, and G. H. S. Bonjar, “Application of Soil‐borne Actinomycetes for Biological Control against Fusarium Wilt of Chickpea (Cicer arietinum) caused by Fusarium solani fsp pisi,” J. Phytopath., vol. 164, no. 3, pp. 967–978, Oct. 2016.
    DOI: 10.1111/jph.12517
  72. A. K. Mittal, Y. Chisti, U. C. Banerjee, “Synthesis of metallic nanoparticles using plant extracts,” Biotechnol. Adv., vol. 31, no. 2, pp. 346 – 356, Mar-Apr. 2013.
    DOI: 10.1016/j.biotechadv.2013.01.003
    PMid: 23318667
  73. B. Sadeghi, F. Gholamhoseinpoor, “A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature,” Spectrochim. Acta A Mol. Biomol. Spectrosc., vol. 134, pp. 310 – 315, Jan. 2015.
    DOI: 10.1016/j.saa.2014.06.046
    PMid: 25022503
  74. P. R. Sre, M. Reka, R. Poovazhagi, M. A. Kumar, and K. Murugesan, “Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica lam,” Spectrochim. Acta A Mol. Biomol. Spectrosc., vol. 135, pp. 1137 – 1144, Jan. 2015.
    DOI: 10.1016/j.saa.2014.08.019
    PMid: 25189525
  75. P. Sanguiñedo et al., “Extracellular biosynthesis of Silver nanoparticles using fungi and their antibacterial activity,” Nano Biomed. Eng., vol. 10, no. 2, pp. 165 – 173, Jun. 2018.
    DOI: 10.5101/nbe.v10i2.p165-173
  76. E. Cremonini et al., “Biogenic selenium nanoparticles synthesized by Stenotrophomonas maltophilia Se ITE 02 loose antibacterial and antibiofilm efficacy as a result of the progressive alteration of their organic coating layer,” Microb. Biotechnol., vol. 11, no. 6, pp. 1037 – 1047, Apr. 2018.
    DOI: 10.1111/1751-7915.13260
    PMid: 29635772
    PMCid: PMC6196382
  77. P. Golinska et al., “Biogenic synthesis of metal nanoparticles from actinomycetes: biomedical applications and cytotoxicity,” Appl. Microbiol. Biotechnol., vol. 98, no. 19, pp. 8083 – 8097, Oct. 2014.
    DOI: 10.1007/s00253-014-5953-7
    PMid: 25158833
  78. P. Kuppusamy, M. M. Yusoff, G. P. Maniam, N. Govindan, “Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications–An updated report,” Saudi Pharmaceutical Journal, vol. 24, no. 4, pp. 473 – 484, Jul. 2016.
    DOI: 10.1016/j.jsps.2014.11.013
  79. E. Abbasi et al., “Silver nanoparticles: synthesis methods, bio-applications and properties,” Crit. Rev. Microbiol., vol. 42, no. 2, pp. 173 – 180, 2016.
    DOI: 10.3109/1040841X.2014.912200
  80. S. Ahmed, M. Ahmad, B. L. Swami, S. Ikram, “Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract,” J. Radiat. Res. Appl. Sci., vol. 9, no. 1, pp. 1 – 7, Jan. 2016.
    DOI: 10.1016/j.jrras.2015.06.006
  81. H. M. Ibrahim, “Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms,” J. Radiat. Res. Appl. Sci., vol. 8, no. 3, pp. 265 – 275, Jul. 2015.
    DOI: 10.1016/j.jrras.2015.01.007
  82. G. Benelli, “Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer—a brief review,” Enzyme Microb. Technol., vol. 95, pp. 58 – 68, Dec. 2016.
    DOI: 10.1016/j.enzmictec.2016.08.022
    PMid: 27866627
  83. F. F. Soleimani, T. Saleh, S. A. Shojaosadati, R. Poursalehi, “Green synthesis of different shapes of Silver nanostructures and evaluation of their antibacterial and cytotoxic activity,” BioNanoSci., vol. 8, no. 1, pp. 72 – 80, Jul. 2017.
    DOI: 10.1007/s12668-017-0423-1
  84. H. T. Michels, S. A. Wilks, J. O. Noyce, and C. W. Keevil, “Copper alloys for human infectious disease control,” in Proc. Materials Science and Technology Conference (MS&T__05), Pittsburgh (PA), 2005, pp. 1546 – 2498.
    Retrieved from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.559.9650&rep=rep1&type=pdf;
    Retrieved on: Aug. 15, 2018
  85. M. Raffi et al., “Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli,” Ann. Microbiol., vol. 60, no. 1, pp. 75 – 80, Feb. 2010.
    DOI: 10.1007/s13213-010-0015-6
  86. G. Faúndez, M. Troncoso, P. Navarrete, G. Figueroa, “Antimicrobial activity of copper surfaces against suspensions of Salmonella enterica and Campylobacter jejuni,” BMC Microbiol., vol. 4, no. 1, p. 19, Apr. 2004.
    DOI: 10.1186/1471-2180-4-19
    PMid: 15119960
    PMCid: PMC411034
  87. P. A. Tran, T. J. Webster, “Selenium nanoparticles inhibit Staphylococcus aureus growth,” Int. J. Nanomedicine, vol. 6, pp. 1553 – 1558, Jul. 2011.
    DOI: 10.2147/IJN.S21729
    PMid: 21845045
    PMCid: PMC3152473
  88. S. Mehtar, I. Wiid, S. D. Todorov, “The antimicrobial activity of copper and copper alloys against nosocomial pathogens and Mycobacterium tuberculosis isolated from healthcare facilities in the Western Cape: an in-vitro study,” J. Hosp. Infect., vol. 68, no. 1, pp. 45 – 51, Jan. 2008.
    DOI: 10.1016/j.jhin.2007.10.009
    PMid: 18069086
  89. B. L. Meatherall, D. Gregson, T. Ross, J. D. Pitout, and K. B. Laupland, “Incidence, risk factors, and outcomes of Klebsiella pneumoniae bacteremia,” Am. J. Med., vol. 122, no. 9, pp. 866 – 873, Sep. 2009.
    DOI: 10.1016/j.amjmed.2009.03.034
    PMid: 19699383
  90. S. S. Magill et al., “Multistate point-prevalence survey of health care–associated infections,” N. Engl. J. Med., vol. 370, no. 13, pp. 1198 – 1208, Mar. 2014.
    DOI: 10.1056/NEJMoa1306801
    PMid: 24670166
    PMCid: PMC4648343
  91. K. Hirukawa et al., “Effect of tensile force on the expression of IGF-I and IGF-I receptor in the organ-cultured rat cranial suture,” Arch. Oral Biol., vol. 50, no. 3, pp. 367 – 372, Mar. 2005.
    DOI: 10.1016/j.archoralbio.2004.07.003
    PMid: 15740717
  92. L. Zhu, J. Elguindi, C. Rensing, S. Ravishankar, “Antimicrobial activity of different copper alloy surfaces against copper resistant and sensitive Salmonella enterica,” Food Microbiol., vol. 30, no. 1, pp. 303 – 310, May 2012.
    DOI:10.1016/j.fm.2011.12.001
    PMid: 22265316
  93. Y. Z. Wan et al., “Modification of medical metals by ion implantation of copper,” Appl. Surf. Sci., vol. 253, no. 24, pp. 9426 – 9429, Oct. 2007.
    DOI: 10.1016/j.apsusc.2007.06.031
  94. J. Liu et al., “Effect of Cu content on the antibacterial activity of titanium - copper sintered alloys,” Mater. Sci. Eng. C, vol. 35, pp. 392 – 400, Feb. 2014.
    DOI: 10.1016/j.msec.2013.11.028
    PMid: 24411393
  95. M. I. Baena, M. C. Mµrquez, V. Matres, J. Botella, A. Ventosa, “Bactericidal activity of copper and niobium – alloyed austenitic stainless steel,” Curr. Microbiol., vol. 53, no. 6, pp. 491 – 495, Dec. 2006.
    DOI: 10.1007/s00284-006-0193-4
    PMid: 17072670
  96. Y. Huang et al., “Antibacterial efficacy, corrosion resistance, and cytotoxicity studies of copper-substituted carbonated hydroxyapatite coating on titanium substrate,” J. Mater. Sci., vol. 50, no. 4, pp. 1688 – 1700, Nov. 2015.
    DOI: 10.1007/s10853-014-8730-1
  97. W. Chen et al., “In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating,” Biomaterials, vol. 27, no. 32, pp. 5512 – 5517, Nov. 2006.
    DOI: 10.1016/j.biomaterials.2006.07.003
    PMid: 16872671
  98. Y. Li, J. Ho, C. P. Ooi, “Antibacterial efficacy and cytotoxicity studies of copper (II) and titanium (IV) substituted hydroxyapatite nanoparticles,” Mater. Sci. Eng. C, vol. 30, no. 8, pp. 1137 – 1144, Oct. 2010.
    DOI: 10.1016/j.msec.2010.06.011
  99. J. P. Ruparelia, A. K. Chatterjee, S. P. Duttagupta, S. Mukherji, “Strain specificity in antimicrobial activity of silver and copper nanoparticles,” Acta Biomater., vol. 4, no. 3, pp. 707 – 716, May 2008.
    DOI: 10.1016/j.actbio.2007.11.006
    PMid: 18248860
  100. T. J. Beveridge, R. G. Murray, “Sites of metal deposition in the cell wall of Bacillus subtilis,” J. Bacteriol., vol. 141, no. 2, pp. 876 – 887, Feb. 1980.
    PMid: 6767692
    PMCid: PMC293699
  101. D. Das, B. C. Nath, P. Phukon, S. K. Dolui, “Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles,” Colloids Surfaces B Biointerfaces, vol. 101, pp. 430 – 433, Jan. 2013.
    DOI: 10.1016/j.colsurfb.2012.07.002
    PMid: 23010051
  102. G. D. M. R. Dabera et al.,”Retarding oxidation of copper nanoparticles without electrical isolation and the size dependence of work function,” Nat. Commun., vol. 8, no. 1, p. 1894, Dec. 2017.
    DOI: 10.1038/s41467-017-01735-6
    PMid: 29196617
    PMCid: PMC5711799
  103. U. Gröber, J. Schmidt, and K. Kisters, “Magnesium in prevention and therapy,” Nutrients, vol. 7, no. 9, pp. 8199 – 8226, Sep. 2015.
    DOI: 10.3390/nu7095388
    PMid: 26404370
    PMCid: PMC4586582
  104. L. Ren, X. Lin, L. Tan, and K. Yang, “Effect of surface coating on antibacterial behavior of magnesium based metals,” Mater. Lett., vol. 65, no. 23-24, pp. 3509 – 3511, Dec. 2011.
    DOI: 10.1016/j.matlet.2011.07.109
  105. D. A. Robinson, R. W. Griffith, D. Shechtman, R. B. Evans, M. G. Conzemius, “In vitro antibacterial properties of magnesium metal against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus,” Acta Biomater., vol. 6, no. 5, pp. 1869 – 1877, May 2010.
    DOI: 10.1016/j.actbio.2009.10.007
    PMid: 19818422
  106. J. Y. Lock et al., “Antimicrobial properties of biodegradable magnesium for next generation ureteral stent applications”, in Proc. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012 (EMBC), San Diego, CA, USA, 2012 pp. 1378 – 1381.
    DOI: 10.1109/EMBC.2012.6346195
    PMid: 23366156
  107. M. Pourbaix, “Atlas of electrochemical equilibria in aqueous solutions”, 2nd English Ed., Houston, Tex., USA: National Association of Corrosion Engineers, 1974.
  108. M. P. Staiger, A. M. Pietak, J. Huadmai, and G. Dias, “Magnesium and its alloys as orthopedic biomaterials: a review,” Biomaterials, vol. 27, no. 9, pp. 1728 – 1734, Mar. 2006.
    DOI: 10.1016/j.biomaterials.2005.10.003
    PMid: 16246414
  109. G. He et al., “Addition of Zn to the ternary Mg-Ca-Sr alloys significantly improves their antibacterial property,” J. Mater. Chem. B, vol. 3, no. 32, pp. 6676 – 6689, Aug. 2015.
    DOI: 10.1039/C5TB01319D
    PMid: 26693010
    PMCid: PMC4675164
  110. A. H. Martinez Sanchez, B. J. C. Luthringer, F. Feyerabend, R. Willumeit, “Mg and Mg alloys: how comparable are in vitro and in vivo corrosion rates ? - A Review,” ACTA Biomater., vol. 13, pp. 16 – 31, Feb. 2015.
    DOI: 10.1016/j.actbio.2014.11.048
    PMid: 25484334
  111. D. Williams, “New interests in magnesium,” Med. Device Technol., vol. 17, no. 3, pp. 9 – 10, Apr. 2006.
    PMid: 16736656
  112. Y. Li et al., “Antibacterial properties of magnesium in vitro and in an in vivo model of implant-associated methicillin-resistant Staphylococcus aureus infection,” Antimicrob. Agents Chemother., vol. 58, no. 12, pp. 7586 – 7591, Dec. 2014.
    DOI: 10.1128/AAC.03936-14
    PMid: 25288077
    PMCid: PMC4249557
  113. N. S. Morris, D. J. Stickler, and R. J. C. Mclean, “The development of bacterial biofilms on indwelling urethral catheters,” World J. Urol., vol. 17, no. 6, pp. 345 – 350, Dec. 1999.
    DOI: 10.1007/s003450050159
    PMid: 10654364
  114. P. Hou et al., “Reduced antibacterial property of metallic magnesium in vivo,” Biomed. Mater., vol. 12, no. 1, p. 015010, Dec. 2016.
    DOI: 10.1088/1748-605X/12/1/015010
    PMid: 27934788
  115. P. L. Miller, B. A. Shaw, R. G. Wendt, W. C. Moshier, “Assessing the corrosion resistance of nonequilibrium magnesium-yttrium alloys,” Corrosion, vol. 51, no. 12, pp. 922 – 931, Dec. 1995.
    DOI: 10.5006/1.3293568
  116. A. Feng, Y. Han, “The microstructure, mechanical and corrosion properties of calcium polyphosphate reinforced ZK60A magnesium alloy composites,” J. Alloys Compd., vol. 504, no. 2, pp. 585 – 593, Aug. 2010.
    DOI: 10.1016/j.jallcom.2010.06.013
  117. L. Li, J. Gao, Y. Wang, “Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid,” Surf. Coatings Technol., vol. 185, no. 1, pp. 92 – 98, Jul. 2004.
    DOI: 10.1016/j.surfcoat.2004.01.004
  118. A. S. Prasad, “Zinc: an overview,” Nutrition, vol. 11, no. 1, pp. 93 – 99, Jan-Feb. 1995.
    PMid: 7749260
  119. M. Valko, H. Morris, M. T. D. Cronin, “Metals, Toxicity and Oxidative Stress,” Curr. Med. Chem., vol. 12, no. 10, pp. 1161 – 1208, May 2005.
    DOI: 10.2174/0929867053764635
    PMid: 15892631
  120. J. S. van der Hoeven, D. Cummins, M. J. M. Schaeken, and F. J. G. van der Ouderaa, “The effect of chlorhexidine and zinc/triclosan mouthrinses on the production of acids in dental plaque,” Caries Res., vol. 27, no. 4, pp. 298-302, 1993.
    DOI: 10.1159/000261554
    PMid: 8402805
  121. M. Burguera-Pascu, A. Rodríguez-Archilla, P. Baca, “Substantivity of zinc salts used as rinsing solutions and their effect on the inhibition of Streptococcus mutans,” J. Trace Elem. Med. Biol., vol. 21, no. 2, pp. 92-101, Jun. 2007.
    DOI: 10.1016/j.jtemb.2006.12.003
    PMid: 17499148
  122. H. Hu et al., “Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium,” Acta Biomater., vol. 8, no. 2, pp. 904 – 915, Feb. 2012.
    DOI: 10.1016/j.actbio.2011.09.031
    PMid: 22023752
  123. B. H. Zhao et al., “Effect of Zn content on cytoactivity and bacteriostasis of micro-arc oxidation coatings on pure titanium,” Surf. Coatings Technol., vol. 228, pp. 428 – 432, Aug. 2013.
    DOI: 10.1016/j.surfcoat.2012.05.037
  124. H. J. Seo, Y. E. Cho, T. Kim, H. I. Shin, I. S. Kwun, “Zinc may increase bone formation through stimulating cell proliferation , alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells,” Nutr. Res. Pract., vol. 4, no. 5, pp. 356 – 361, Oct. 2010.
    DOI: 10.4162/nrp.2010.4.5.356
    PMid: 21103080
    PMCid: PMC2981717
  125. H. Kawamura et al., “Stimulatory effect of zinc-releasing calcium phosphate implant on bone formation in rabbit femora,” J. Biomed. Mater. Res. Part A, vol. 50, no. 2, pp. 184 – 190, May 2000.
    DOI: 10.1002/(sici)1097-4636(200005)50:2<184::aid-jbm13>3.0.co;2-3
    PMid: 10679683
  126. Y. Reyes-Vidal et al., “Electrodeposition, characterization, and antibacterial activity of zinc/silver particle composite coatings,” Appl. Surf. Sci., vol. 342, pp. 34 – 41, Jul. 2015.
    DOI: 10.1016/j.apsusc.2015.03.037
  127. K. P. Tank, K. S. Chudasama, V. S. Thaker, M. J. Joshi, “Pure and zinc doped nano-hydroxyapatite: synthesis, characterization, antimicrobial and hemolytic studies,” J. Cryst. Growth, vol. 401, pp. 474 – 479, Sep. 2014.
    DOI: 10.1016/j.jcrysgro.2014.01.062
  128. N. Iqbal et al., “Characterization, antibacterial and in vitro compatibility of zinc–silver doped hydroxyapatite nanoparticles prepared through microwave synthesis,” Ceram. Int., vol. 40, no. 3, pp. 4507 – 4513, Apr. 2014.
    DOI: 10.1016/j.ceramint.2013.08.125
  129. Y. Huang et al., “Osteoblastic cell responses and antibacterial efficacy of Cu/Zn co-substituted hydroxyapatite coatings on pure titanium using electrodeposition method,” RSC Adv., vol. 5, no. 22, pp. 17076 – 17086, Feb. 2015.
    DOI: 10.1039/c4ra12118j
  130. S. Kurokawa, M. J. Berry, “Selenium. Role of essential metalloid in health,” in Interrelations between Essentials Metal Ions and Human Diseases, vol. 13, Dordrecht, Netherlands: Springer, 2013, pp. 499 – 534.
    DOI: 10.1007/978-94-007-7500-8_16
    PMid: 24470102
    PMCid: PMC4339817
  131. C. D. Davis, P. A. Tsuji, and J. A. Milner, “Selenoproteins and cancer prevention,” Annu. Rev. Nutr., vol. 32, pp. 73 – 95, Aug. 2012.
    DOI: 10.1146/annurev-nutr-071811-150740
    PMid: 22404120
  132. K. Schwarz and C. M. Foltz, “Selenium as an integral part of factor 3 against dietary necrotic liver degeneration,” J. Am. Chem. Soc., vol. 79, no. 12, pp. 3292 – 3293, Jun. 1957.
    DOI: 10.1021/ja01569a087
  133. M. Navarro-Alarcon and C. Cabrera-Vique, “Selenium in food and the human body: a review,” Sci. Total Environ., vol. 400, no. 1-3, pp. 115 – 141, Aug. 2008.
    DOI: 10.1016/j.scitotenv.2008.06.024
    PMid: 18657851
  134. C. Rodríguez-Valencia et al., “Novel selenium-doped hydroxyapatite coatings for biomedical applications,” J. Biomed. Mater. Res. Part A, vol. 101, no. 3, pp. 853 – 861, Mar. 2013.
    DOI: 10.1002/jbm.a.34387
    PMid: 22968925
  135. J. Lubinski et al., “Serum selenium levels predict survival after breast cancer,” Breast Cancer Res. Treat., vol. 167, no. 2, pp. 591 – 598, Jan. 2018.
    DOI:10.1007/s10549-017-4525-9
    PMid: 29043463
  136. P. D. Whanger, “Selenium and its relationship to cancer: an update,” Br. J. Nutr., vol. 91, no. 1, pp. 11 – 28, Jan. 2004.
    DOI: 10.1079/bjn20031015
    PMid: 14748935
  137. G. F. Combs, “Selenium in global food systems,” Br. J. Nutr., vol. 85, no. 5, pp. 517 – 547, May 2001.
    DOI: 10.1079/bjn2000280
    PMid: 11348568
  138. C. D. Thomson, “SELENIUM | Physiology,” in Encyclopedia of Food Sciences and Nutrition, B. Caballero, L. C. Trugo, P. M. Finglas, Eds., 2th ed., London, UK: Academic Press, 2003, pp. 5117 – 5124.
    DOI: 10.1016/B0-12-227055-X/01061-0
  139. M. C. Ledesma et al., “Selenium and Vitamin E for prostate cancer: post-SELECT (Selenium and Vitamin E Cancer Prevention Trial) status,” Mol. Med., vol. 7, no. 1-2, pp. 134 – 143, Jan-Feb. 2011.
    DOI: 10.2119/molmed.2010.00136
    PMid: 20882260
    PMCid: PMC3022975
  140. Environmental health criteria 58: selenium, International programme on chemical safety, WHO, Geneva, Switzerland, 1987.
    Retrieved from: http://www.inchem.org/documents/ehc/ehc/ehc58.html
    Retrieved on: Jul. 18, 2018
  141. G. Q. Yang, S. Z. Wang, R. H. Zhou, S. Z. Sun, “Endemic selenium intoxication of humans in China,” Am. J. Clin. Nutr., vol. 37, no. 5, pp. 872 – 881, May 1983.
    DOI: 10.1093/ajcn/37.5.872
    PMid: 6846228
  142. E. Kheradmand et al., “The antimicrobial effects of selenium nanoparticle-enriched probiotics and their fermented broth against Candida albicans,” DARU J. Pharm. Sci., vol. 22, no. 1, pp. 1 – 6, Jun. 2014.
    DOI: 10.1186/2008-2231-22-48
    PMid: 24906455
    PMCid: PMC4060857
  143. Q. Wang, T. J. Webster, “Nanostructured selenium for preventing biofilm formation on polycarbonate medical devices,” J. Biomed. Mater. Res. Part A, vol. 100, no. 12, pp. 3205 – 3210, Dec. 2012.
    DOI: 10.1002/jbm.a.34262
    PMid: 22707390
  144. J. Holinka, M. Pilz, B. Kubista, E. Presterl, R. Windhager, “Effects of selenium coating of orthopaedic implant surfaces on bacterial adherence and osteoblastic cell growth,” Bone Jt. J, vol. 95, no. 5, pp. 678 – 682, May 2013.
    DOI:10.1302/0301-620X.95B5.31216
    PMid: 23632681
  145. S. Pilathadka, D. Vahalová, T. Vosáhlo, “The Zirconia: a new dental ceramic material. An Overview,” Prague Med Rep, vol. 108, no. 1, pp. 5 – 12, 2007.
    PMid: 17682722
  146. S. B. Farina, A. G. Sanchez, S. Ceré, “Effect of surface modification on the corrosion resistance of Zr-2.5Nb as material for permanent implants,” Procedia Mater. Sci., vol. 8, pp. 1166 – 1173, 2015.
    DOI: 10.1016/j.mspro.2015.04.181
  147. T. Vagkopoulou, S. O. Koutayas, P. Koidis, “Zirconia in dentistry: Part 1. Discovering the nature of an upcoming bioceramic,” Eur. J. Esthet. Dent.