|
APPLICATION OF MICROWAVE RADIATION FOR THE DECOMPOSITION OF URANYL NITRATE IN THE SILICA GEL MATRIX
S. A. Kulyukhin, V. V. Kulemin, V. B. Krapukhin, E.P. Krasavina, V.P. Gorbacheva, I.A. Rumer
Pages: 91-97
DOI: 10.21175/RadJ.2018.02.015
Received: 25 MAY 2018, Received revised: 15 NOV 2018, Accepted: 18 NOV 2018, Published online: 27 DEC 2018
Abstract |
References |
Full Text (PDF)
The decomposition of uranyl nitrate in a matrix of large coarse-granular silica gel (KSKG trademark) under the action of microwave radiation (MWR) was studied. Microwave irradiation leads not only to the formation of solid decomposition products UO3, UO2(OH)NO3, and their hydrates in the pores of KSKG granules, but also to the accumulation of gaseous NOx and H2O. The presence of NOx in KSKG pores leads to the HNO3 formation in the course of washing of sorbent granules with water. This prevents hydrolysis of uranyl nitrate and the formation of UO2(OH)2·H2O in KSKG pores. The washout of uranium with water and HClO4 solutions from the KSKG fraction containing the products of the decomposition of 2 and 10 g of the initial UO2(NO3)2·6H2O under the action of MWR (hereinafter denoted as KSKG-P-I) was studied. Upon the ~7-day contact of the solid and liquid phases at the total ratio S : L = 1 : 20, from 5 to 14% of U passed into the aqueous phase from KSKG-P-I samples obtained in experiments with 10 and 2 g of UO2(NO3)2·6H2O, respectively. In the course of repeated treatments of KSKG-P-I with water, pH of the wash water increased from 3 to 6, owing to the removal of NOх from KSKG pores. Then an insoluble phase of uranyl hydroxide UO2(OH)2·H2O, which can also be presented as hydroxylated uranium trioxide UO3·2H2O, was being gradually formed from the solution obtained by the treatment of KSKG-P-I with water. On treatment of KSKG-P-I with HClO4 solutions (pH 1–2), virtually all uranium species formed by MWR treatment of aqueous uranyl nitrate solutions in the KSKG matrix dissolved (at the contact time of the solid and liquid phases of ~21 days, the amount of U that passed into HClO4 solutions is ~90%). The amount of the U form that is not extracted with HClO4 solutions and remains in KSKG granules is ~12% of its initial amount. The X-ray phase analysis suggests that the uranium species remaining in KSKG are silicate compounds formed by sorbent saturation with a uranyl nitrate solution and the subsequent MWR treatment.
- Advances in Technologies for the Treatment of Low and Intermediate Level Radioactive Liquid Wastes, IAEA Technical Report Series No. 370, IAEA, Vienna, Austria, 1994.
Retrieved from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/26/038/26038193.pdf; Retrieved on: May 25, 2018 - П. П. Полуэктов, Л. П. Суханов, Ю. И. Матюшин, “Научные подходы и технические решения в области обращения с жидкими высокоактивными отходами,” Российский химический журнал, т. 49, но. 4, стр. 29 – 42, 2005. (P. P. Poluektov, L. P. Sukhanov, Yu. I. Matyushin, “Scientific approaches and technical solutions in area of handling the liquid highly active wastes,” Ross. Khim. Zh., vol. 49, no. 4, pp. 29 – 42, 2005.)
Retrieved from: http://www.chem.msu.su/rus/jvho/2005-4/29.pdf; Retrieved on: Aug. 17, 2018 - Э. Е. Коновалов, О. В. Старков, М. П. Мышковский, Л. С. Гудков, А. К. Нардова, “Иммобилизация цезия и стронция, фиксированных на силикагеле, в минералоподобные матрицы в режиме СВС,” в Тезисы докладов, Третья Российская конференция по радиохимии (Радиохимия-2000), Санкт-Петербург, Россия, 2000, стр. 103. (E. E. Konovalov, O. V. Starkov, M. P. Myshkovskii, L. S. Gudkov, A. K. Nardova, “The immobilization of cesium and strontium fixed on silica gel into mineral-like matrices in the SSS mode,” in Book of Abstr. 3rd Russ. Conf. on Radiochemistry (Radiochemistry-2000), St. Petersburg, Russia, 2000, p. 103.)
Retrieved from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/33/026/33026137.pdf; Retrieved on: Aug. 18, 2018 - К. К. Корченкин, А. Н. Машкин, Е. Г. Дзекун, Б. Н. Парфанович, Е. А. Филиппов, “Использование силикагеля для промежуточного хранения долгоживущих радионуклидов,” в Тезисы докладов, Третья Российская конференция по радиохимии (Радиохимия-2000), Санкт-Петербург, Россия, 2000, стр. 125. (K. K. Korchenkin, A. N. Mashkin, E. G. Dzekun, B. N. Parfanovich, E. A. Filippov, “Use of silica gel for intermediate storage of long-lived radionuclides,” in Book of Abstr. 3rd Russ. Conf. on Radiochemistry (Radiochemistry-2000), St. Petersburg, Russia, 2000, p. 125.)
Retrieved from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/33/026/33026137.pdf; Retrieved on: Aug. 18, 2018 - M. Moeller, R. Waitz, “Mikrowellen In-Fass TrocknungEffektives Eindampfen von radioaktiven Flüssigabfällen,” ATW-Int. Z. Kernenerg., vol. 52, no. 12, pp. 807 – 810, 2007. (M. Moeller and R. Waitz, “Microwave in-drum drying. Effective evaporation of radioactive liquid waste,” ATW-Int. Z. Kernenerg., vol. 52, no. 12, pp. 807 – 810, 2007)
- С. А. Кулюхин, А. Н. Каменская, В. А. Лавриков, “Механизм разложения UO2(NO3)2∙6H2O под действием микроволнового излучения,” Радиохимия, т. 51, но. 3, стр. 262 – 268, 2009. (S. A. Kulyukhin, A. N. Kamenskaya, V. A. Lavrikov, “Mechanism of UO2(NO3)2∙6H2O decomposition under the action of microwave radiation,” Radiochemistry, vol. 51, no. 3, pp. 262 – 268, 2009.)
DOI: 10.1134/S1066362209030084 - С. А. Кулюхин, А. Н. Каменская, И. А. Румер, “Механизм разложения UO2(NO3)2∙6H2O под действием микроволнового излучения: Часть 2,” Радиохимия, т. 51, но. 5, стр. 469 – 478, 2009. (S. A. Kulyukhin, A. N. Kamenskaya, I. A. Rumer, “Mechanism of UO2(NO3)2∙6H2O decomposition under the action of microwave radiation: Part 2,” Radiochemistry, vol. 51, no. 5, pp. 469 – 478, 2009.)
DOI: 10.1134/S1066362209050063 - Р. А. Лидин, Л. Л. Андреева, В. А. Молочко, Константы неорганических соединений. Справочник, Москва, Россия: Дрофа, 2006. (R. A. Lidin, L. L. Andreeva, V. A. Molochko, Constants of Inorganic Compounds: Handbook, Moscow, Russia: Drofa, 2006.)
Retrieved from: https://www.twirpx.com/file/248297/; Retrieved on: Aug. 18, 2018 - Ю. Ю. Лурье, Справочник по аналитической химии, Москва, Россия: Химия, 1971, стр. 92 – 101. (Yu. Yu. Lur’e, Handbook of Analytical Chemistry, Moscow, Russia: Khimiya, 1971, pp. 92 – 101.)
Retrieved from: https://chem-space.pp.ua/025-lure-juju-spravochnik-po-analiticheskoj-himii-1971-i-1989-djvu.html; Retrieved on: Aug. 18, 2018 - JCPDS—Int. Centre for Diffraction Data, PDF 77-0121, UO2(NO3)2·6H2O, ICDD, Newtown Square (PA), USA, 2018.
- JCPDS—Int. Centre for Diffraction Data, PDF 16-0204, UO2(OH)(NO3)·3H2O, ICDD, Newtown Square (PA), USA, 2018.
- JCPDS—Int. Centre for Diffraction Data, PDF 16-0203, UO2(OH)(NO3)·4H2O, Newtown Square (PA), USA, 2018.
- JCPDS—Int. Centre for Diffraction Data, РDF 70-0176, (UO2)2(OH)2(NO3)2·4H2O, ICDD, Newtown Square (PA), USA, 2018.
- JCPDS—Int. Centre for Diffraction Data, РDF 83-2392, (UO2)2(SiO4)·2H2O, ICDD, Newtown Square (PA), USA, 2018.
- JCPDS—Int. Centre for Diffraction Data, РDF 49-0014, (UO2)2(SiO4)2∙2H2O, ICDD, Newtown Square (PA), USA, 2018.
- JCPDS—Int. Centre for Diffraction Data, РDF 35-0491, (UO2)2(SiO4)·2H2O, ICDD, Newtown Square (PA), USA, 2018.
- JCPDS—Int. Centre for Diffraction Data, РDF 43-0364, UO3·2H2O, ICDD, Newtown Square (PA), USA, 2018.
- JCPDS—Int. Centre for Diffraction Data, РDF 29-1376, UO3·2H2O, ICDD, Newtown Square (PA), USA, 2018.
- F. K. Stohl, D. K. Smith, “The crystal chemistry of the uranyl silicate minerals,” Am. Mineral., vol. 66, no. 5-6, pp. 610 – 625, 1981.
Retrieved from: https://pdfs.semanticscholar.org/55d1/1ed1a25a03c6d9fdf96ec99ff0f5f96b2845.pdf; Retrieved on: May 25, 2018 - R. A. Porter, W. J. Weber, “The interaction of silicic acid with iron(III) and uranyl ions in dilute aqueous solution,” J. Inorg. Nucl. Chem., vol. 33, no. 8, pp. 2443 – 2449, Aug. 1971.
DOI: 10.1016/0022-1902(71)80219-1 - H. Moll, G. Geipel, W. Matz, G. Bernhard, H. Nitsche, “Solubility and speciation of (UO2)2SiO4∙2H2O in aqueous systems,” Radiochim. Acta, vol. 74, no. S1, pp. 3 – 7, 1996.
DOI: 10.1524/ract.1996.74.special-issue.3
|