|
DIAMOND DETECTOR TECHNOLOGY: STATUS AND PERSPECTIVES
D. Hits et al.
Pages: 123-127
DOI: 10.21175/RadJ.2018.02.020
Received: 15 JUN 2018, Received revised: 10 OCT 2018, Accepted: 26 OCT 2018, Published online: 27 DEC 2018
Abstract |
References |
Full Text (PDF)
The radiation tolerance of chemical vapor deposition (CVD) diamond against different particle species and energies has been studied in beam tests and is presented. We also present beam test results on signal size as a function of incident particle rate in charged particle detectors based on un-irradiated and irradiated poly-crystalline CVD diamond over a range of particle fluxes from 2 kHz/cm2 to 20 MHz/cm2. The pulse height of the sensors was measured using readout electronics with a peaking time of 6 ns. In addition, the functionality of poly-crystalline CVD diamond 3D devices is demonstrated in beam tests and 3D diamond detectors are shown to be a promising technology for applications in future high rate/high intensity experiments.
- M. H. Nazaré et al., Development of Diamond Tracking Detectors for High Luminosity Experiments at the LHC, R & D Proposal, Geneva, Switzerland, 1994.
Retrieved from: https://cds.cern.ch/record/293000/files/cer-0224986.pdf; Retrieved on: 13.06.2018 - The Phase-2 Upgrade of the CMS Tracker, Technical Design Report, CERN, Geneva, Switzerland, 2018.
Retrieved from: https://cds.cern.ch/record/2272264/files/CMS-TDR-014.pdf; Retrieved on: Jun. 13, 2016 - D. Meier et al., “Proton irradiation of CVD diamond detectors for high-luminosity experiments at the LHC,” Nucl. Instrum. & Meth., vol. A426, no. 1, pp. 173 – 180, Apr. 1999.
DOI: 10.1016/S0168-9002(98)01488-0 - F. Bachmair, “CVD Diamond Sensors in Detectors for High Energy Physics,” Ph.D. dissertation, ETH Zürich, 2016.
Retrieved from: http://inspirehep.net/record/1503510/files/CERN-THESIS-2016-163.pdf; Retrieved on: Jun. 13, 2018 - L. Bäni, “Top Quarks and Diamonds,” Ph. D. dissertation, ETH Zürich, 2017.
Retrieved from: https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/222412/Top_Quarks_and_ Diamonds.pdf?sequence=2&isAllowed=y; Retrieved on: Jun. 13, 2018 - O. Toker et al, “VIKING, a CMOS low noise monolithic 128 channel frontend for Si-strip detector readout,” Nucl. Instrum. & Meth., vol. A340, no. 3, pp. 572 – 579, Mar. 1994.
DOI: 10.1016/0168-9002(94)90140-6 - C. Colledani et al., “A submicron precision silicon telescope for beam test purposes,” Nucl. Instrum. & Meth., vol. A372, no. 3, pp. 379 – 384, Apr. 1996.
DOI: 10.1016/ 0168-9002(95)01414-4. - W. Adam, et al., “Pulse height distribution and radiation tolerance of CVD diamond detectors,” Nucl. Instrum. & Meth., vol. A447, no. 1-2, pp. 244-250, June 2000.
DOI: 10.1016/S0168-9002(00)00195-9 - πM1 Beam Line, Paul Scherrer Institute, Villigen, Switzerland, 2018.
Retrieved from: https://www.psi.ch/sbl/pim1-beamline; Retrieved on: Jun. 13, 2018 - H. C. Kästli et al., “Design and performance of the CMS pixel detector readout chip,” Nucl. Instrum. Meth.,
vol. A565, no. 1, pp. 188 – 194, Sep. 2006. DOI: 10.1016/j.nima.2006.05.038 - S. Ritt, DRS4 Evaluation Board, Paul Scherrer Institut, Villigen, Switzerland, 2018.
Retrieved from: http://www.psi.ch/drs/evaluation-board; Retrieved on: Jun. 14, 2018 - S. Parker, C. J. Kenney, J. Segal, “3-D: A proposed new architecture for solid state radiation detectors,” Nucl. Instrum. Meth. Phys. Res., vol. A395, no. 3, pp. 328 – 343, Aug. 1997.
DOI: 10.1016/S0168-9002(97)00694-3 - F. Bachmair et al.,“A 3D Diamond Detector for Particle Tracking,” Nucl. Instrum. Meth. Phys. Res., vol. A786, pp. 97 – 104, Jun. 2015.
DOI: 10.1016/j.nima.2015.03.033 - II-VI Inc. official webpage, Saxonburg (PA), USA, 2018.
Retrieved from: https://www.ii-vi.com; Retrieved on: Jun. 14, 2018 - M. J. Booth et al., “Study of cubic and hexagonal cell geometries of a 3D diamond detector with a proton micro-beam,” Diam. Relat. Mater., vol. 77, pp. 137 – 145, Aug. 2017.
DOI: 10.1016/j.diamond.2017.06.014 - H. C. Kästli, “Frontend electronics development for the CMS pixel detector upgrade,” Nucl. Instrum. Meth.,
vol. A731, pp. 88 – 91, Dec. 2013 DOI: 10.1016/j.nima.2013.05.056
|