Volume 3, Issue 3

Original research papers

Radiation Detectors

TEMPERATURE STABILIZATION OF SiPM-BASED GAMMA-RADIATION SCINTILLATION DETECTORS

Viktors Ivanovs, S. Gushchin, Valerijs Ivanovs, V. Fjodorovs, D. Kuznecovs, A. Loutchanski, V. Ogorodniks

Pages: 165–171

DOI: 10.21175/RadJ.2018.03.028

Received: 15 JUN 2018, Received revised: 4 DEC 2018, Accepted: 8 DEC 2018, Published online: 28 FEB 2019

Silicon photomultipliers (SiPMs) coupled with various scintillators are currently used as gamma-radiation detectors for different applications. Many tasks require the ability to use detectors in environments with varying operating temperatures. However, the profound dependences of the characteristics of both SiPMs and scintillators on temperature make it difficult to use these detectors in such environmental conditions. The gain of an SiPM increases with increases in bias voltage, and it decreases with increases in temperature; however, the scintillator’s light yield may increase and/or decrease with temperature, depending on the type of scintillator used. Such temperature dependence makes it necessary to use special techniques for the stabilization of the detector parameters. We proposed and tested a method and an electronic module for compensating for the temperature instabilities of the gain of an SiPM and the light output of BGO and CsI(Tl) scintillators. Our method is based on the application of the SiPM biasing power supply that is controlled and managed by the microprocessor. The calibration data of the temperature dependence of a photo peak (662 keV) are stored in the microprocessor memory. The exact value of the bias voltage for each temperature is calculated by the formula of the 5th-degree polynomial. This method achieved a high accuracy of the photo peak position stabilization in the tested operation temperature range (-20⁰C - +50⁰C). The test results of the SiPM-based gamma-radiation BGO and CsI(Tl) scintillation detectors as well as the results of their practical applications in medical surgical probes are presented.
  1. B. Sanaei, M. T. Baei, Z. Sayyed-Alangi, “Characterization of a New Silicon Photomultiplier in Comparison with a Conventional Photomultiplier Tube,” J. Modern Phys., no. 6, pp. 425 – 433, Mar. 2015.
    Retrieved from: https://file.scirp.org/pdf/JMP_ 2015032514312660.pdf;
    Retrieved on: Nov. 23, 2018
  2. M. A. Wonders, D. L. Chichester, M. Flaska, “Characterization of New-Generation Silicon Photomultipliers for Nuclear Security Applications,” in EPJ Web Conf., Advancements in Nuclear Instrumentation Measurement Methods and their Applications (ANIMMA 2017), Liège, Belgium, Jun. 2017.
    Retrieved from: https://www.epj-conferences.org/articles/epjconf/pdf/2018/05/epjconf_animma2018_07015.pdf;
    Retrieved on: Nov. 23, 2018
  3. Download Center, EPIC Crystals Co., Ltd., Kunshan, China, 2018.
    Retrieved from: http://www.epic-crystal.com/download-center/;
    Retrieved on: Nov. 23, 2018
  4. Product Overview, C-SERIES SIPM: Silicon Photomultiplier Sensors, SensL, Cork, Ireland, 2018.
    Retrieved from: https://www.onsemi.com/ PowerSolutions/product.do?id=C-SERIES%20SIPM&pdf=Y;
    Retrieved on: Nov. 23, 2018
  5. BGO Bismuth Germanate Scintillation Material, Data Sheet, Saint-Gobain Crystals, La Défense, France, 2018.
    Retrieved from: https://www.crystals.saint-gobain.com/sites/imdf.crystals.com/files/documents/bgo-material-data-sheet.pdf;
    Retrieved on: Nov. 23, 2018
  6. P. L. Wang, Y. L. Zhang, Z. Z. Xu, X. L. Wang, “Study on the temperature dependence of BGO light yield,” Sci. China Phys. Mech., vol. 57, no. 10, pp. 1898 – 1901, Jun. 2014.
    DOI: 10.1007/s11433-014-5548-4
  7. C. L. Melcher, J. S. Schweitzer, A. Liberman, J. Simonetti, “Temperature dependence of fluorescent decay time and emission spectrum of bismuth germinate, IEEE Trans. Nucl. Sci., vol. NS-32, no. 1, pp. 529 – 532, Feb. 1985.
    DOI: 10.1109/TNS.1985.4336887
  8. R. Mao, L. Zhang, R.-Y. Zhu, “Optical and Scintillation properties of inorganic scintillators in high energy physics,” IEEE Trans. Nucl. Sci., vol. 55, no. 4, pp. 2425 – 2431, Aug. 2008.
    DOI: 10.1109/TNS.2008.2000776
  9. J. D. Valentine, W. W. Moses, S. E. Derenzo, D. K. Wehe, G. F. Knoll, “Temperature dependence of CsI(Tl) gamma-ray excited scintillation characteristics,” Nucl. Instr. Meth. Phys. Res., vol. 325, pp. 147 – 157, Feb. 1993.
    DOI: 10.1016/0168-9002(93)91015-F
  10. CsI(Tl), CsI(Na) Cesium Iodide scintillation material, Data Sheet, Saint-Gobain Crystals, La Défense, France, 2018.
    Retrieved from: https://www.crystals.saint-gobain.com/sites/imdf.crystals.com/files/documents/csitl-and-na-material-data-sheet.pdf;
    Retrieved on: Nov. 23, 2018
  11. Introduction to SiPM, Technical note, Rev. 6.0, SensL, Cork, Ireland, 2017.
    Retrieved from: https://www.sensl.com/downloads/ds/TN%20-%20Intro%20to%20SPM%20Tech.pdf;
    Retrieved on: Nov. 23, 2018
  12. S. Piatek, How does temperature affect the gain of an SiPM? Hamamatsu Corporation & New Jersey Institute of Technology, New Jersey (NJ), USA, 2016.
    Retrieved from: https://hub.hamamatsu.com/sp/hc/resources/Temperature_Gain_SiPM.pdf?utm_source=hc&utm_med ium=email&utm_campaign=hc-enews;
    Retrieved on: Nov. 23, 2018
  13. P. Eckert, H.-C. Schultz-Coulon, W. Shen, R. Stamen, A. Tadday, “Characterisation studies of silicon photomultipliers,” Nucl. Instrum. Methods Phys. Res., vol. 620, no. 2-3, pp. 217 – 226, Aug. 2010.
    DOI: 10.1016/j.nima.2010.03.169
  14. M. Ramilli, “Characterization of SiPM: temperature dependencies,” in Proc. 2008 IEEE Nuclear Science Symposium (NSS/MIC), Dresden, Germany, 2008.
    DOI: 10.1109/NSSMIC.2008.4774854
  15. Datasheet: Silicon Photomultipliers (SiPM), Low-Noise, Blue-Sensitive, SensL, Cork, Ireland, 2018.
    Retrieved from: https://www.onsemi.com/pub/Collateral/MICROC-SERIES-D.PDF;
    Retrieved on: Nov. 23, 2018
  16. A. Manor at al., “Compensation of scintillation sensor gain variation during temperature transient conditions using signal processing techniques,” in Proc. 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC), Orlando (FL), USA, 2009, pp. 2399 – 2403.
    DOI: 10.1109/NSSMIC.2009.5402169
  17. G. Pausch, J. Stein, N. Teofilov, “Stabilizing scintillation detector system by exploiting the temperature dependence of the light pulse decay time,” IEEE Trans. Nucl. Sci., vol. 52, no. 5, pp. 1849 – 1855, Oct. 2005.
    DOI: 10.1109/TNS.2005.856616
  18. R. W. Carlson, “Standardized luminophore,” U.S. patent US3030509, USA, Apr. 17, 1962.
    Retrieved from: https://patentimages.storage.googleapis.com/11/8b/98/65ada86acbf647/US3030509.pdf;
    Retrieved on: Nov. 23, 2018
  19. K. Saucke, G. Pausch, J. Stein, H.-G. Ortlepp, P. Schotanus, “Stabilizing scintillation detector systems with pulsed LEDs: a method to derive the LED temperature from pulse height spectra,” IEEE Trans. Nucl. Sci., vol. 52, no. 6, pp. 3160 – 3165, Dec. 2005.
    DOI: 10.1109/TNS.2005.862929
  20. M. Yamashita, S. Takeuchi, “Temperature-compensating pulsed reference light source using a LED,” Rev. Sci. Instrum., vol. 54, no. 12, pp. 1795 – 1796, Aug. 1983.
    DOI: 10.1063/1.1137342
  21. A. V. Stolin, S. Majewski, R. R. Raylman, “Novel Method of Temperature Stabilization for SiPM-Based Detectors,” IEEE Trans. Nucl. Sci., vol. 60, no. 5, pp. 3181 – 3187, Oct. 2013.
    DOI: 10.1109/TNS.2013.2273398
  22. Z. Li et al., “A gain control and stabilization technique for silicon photomultipliers in low-light-level applications around room temperature”, Nucl. Instr. Meth. Phys. Res. A, vol. 695, spec. issue, pp. 222 – 225, Dec. 2012.
    DOI: 10.1016/j.nima.2011.12.037
  23. F. Licciulli, C. Marzocca, “An Active Compensation System for the Temperature Dependence of SiPM Gain,” IEEE Trans. Nucl. Sci., vol. 62, no. 1, pp. 228 – 235, Feb. 2015.
    DOI: 10.1109/TNS.2015.2388580
  24. P. S. Marrocchesi et al., “Active control of the gain of a 3 mm x 3 mm silicon photomultiplier,” Nucl. Instr. Meth. Phys. Res. Sec. A, vol. 602, no. 2, pp. 391 – 395, 2009.
    DOI: 10.1016/j.nima.2008.12.199
  25. G. Eigen et al., “SiPM gain stabilization studies for adaptive power supply,” presented at the International Workshop on Future Linear Colliders (LCWS15), Whistler, Canada, 2015.
    Retrieved from: https://arxiv.org/pdf/1603.00016.pdf;
    Retrieved on: Nov. 23, 2018
  26. A. Kaplan, “Correction of SiPM temperature dependencies,” Nucl. Instr. Meth. Phys. Res. A, vol. 610, no. 1, pp. 114 – 117, Oct. 2009.
    DOI: 10.1016/j.nima.2009.05.137
  27. S. Nieswand, “A Peltier cooling system for SiPM temperature stabilization,” B.Sc. dissertation, CERN, Geneva, Switzerland, Oct. 2012.
    Retrieved from: https://web.physik.rwth-aachen.de/~hebbeker/theses/nieswand_bachelor.pdf;
    Retrieved on: Nov. 23, 2018
  28. G. Collazuol, M. G. Bisognia, S. Marcatilia, C. Piemonte, A. Del Guerraa, “Studies of silicon photomultipliers at cryogenic temperatures,” Nucl. Instr. Meth. Phys. Res. Sec. A, vol. 628, no. 1, pp. 389 – 392, Feb. 2011.
    DOI: 10.1016/j.nima.2010.07.008