|
PROTON IRRADIATION EFFECTS ON SINGLE-PHOTON AVALANCHE DIODES
F. Di Capua, M. Campajola, D. Fiore, C. Nappi, E. Sarnelli, V. Izzo
Pages: 178–184
DOI: 10.21175/RadJ.2018.03.030
Received: 3 JUL 2018, Received revised: 12 DEC 2018, Accepted: 31 DEC 2018, Published online: 28 FEB 2019
Abstract |
References |
Full Text (PDF)
In this paper, we investigated the discrete switching of the Dark Count Rate between two or more levels in Single-Photon Avalanche Diode devices. This phenomenon, known as Random Telegraph Signal, is related to the density and distribution of defects in the semiconductor lattice and oxides. In this paper, we focused on a test chip containing SPADs with different architectures designed and implemented in 150-nm CMOS technology. The occurrence probability of the Random Telegraph Signal for proton-irradiated devices has been measured as a function of temperature for different SPAD layouts.
- S. Cova, A. Longoni, and A. Andreoni, “Towards Picosecond Resolution with Single-Photon Avalanche Diodes,” Rev. Sci. Instr.,vol. 52, no. 3, pp. 408 – 412, Mar. 1981.
DOI: 10.1063/1.1136594 - M. M. Ter-Pogossian, N. A. Mullani, D. C. Ficke, J. Markham, D. L. Snyder, “Photon time-of-flight-assisted positron emission tomography,” J. Comput. Assist. Tomogr., vol.5, no. 2, pp. 227 – 239, Apr. 1981.
DOI: 10.1097/00004728-198104000-00014 PMid: 6971303 - E. Schaefer, “Search for gamma ray burst counterparts,” in Proc. AIP Conf. Gamma-ray burstr: Second Workshop (AIP 307), Huntsville (AL), USA, 1993.
DOI: 10.1063/1.45900 - D. Bronzi et al., “100 000 frames/s 64 °ø 32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 6, 3804310, Nov-Dec. 2014.
DOI: 10.1109/JSTQE.2014.2341562 - S. Cova et al., “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt., vol. 35, no. 12, pp. 1956 – 1976, Apr. 1996.
DOI: 10.1364/AO.35.001956 - A. Rochas et al., “Low-noise silicon avalanche photodiodes fabricated in conventional CMOS technologies,” IEEE Trans. Electron Devices, vol. 49, no. 3, pp. 387 – 394, Mar. 2002.
DOI: 10.1109/16.987107 - J. A. Richardson, E. A. G. Webster, L. A. Grant, R. K. Henderson, “Scaleable Single-Photon Avalanche Diode Structures in Nanometer CMOS Technology,” IEEE Trans. Electron Devices,vol. 58, no. 7, pp. 2028 – 2035, Jul. 2011.
DOI: 10.1109/TED.2011.2141138 - L. Carrara, C. Niclass, N. Scheidegger, H. Shea, E. Charbon, “A Gamma. X-Ray and High-Energy Proton Radiation-Tolerant CIS for Space Applications,”in Proc. Solid-State Circuits Conference (ISSCC 2009), San Francisco (CA), USA, 2009.
DOI: 10.1109/ISSCC.2009.4977297 - L. Carrara, M. Fishburn, C. Niclass, N. Scheidegger, H. Shea, E. Charbon, “A Variable Dynamic Range Single-Photon Imager Designed for Multi-Radiation Tolerance,” in Proc. EOS Frontiers in Electronic Imaging – Single-photon Imaging, Munich, Germany, Jun. 2009.
Retrieved from: https://www.researchgate.net/publication/41939451_A_Variable_Dynamic_Range_Single-Photon_Image r_Designed_for_Multi-Radiation_Tolerance; Retrieved on: Apr. 3, 2018 - I. H. Hopkins, G. R. Hopkinson, “Random telegraph signals from proton-irradiated CCDs,” IEEE Trans. Nucl. Sci. vol. 40, no. 6, pp. 1567 – 1574, Dec. 1993.
DOI: 10.1109/23.273552 - I. H. Hopkins, G. R. Hopkinson, “Further measurements of random telegraph signals in proton-irradiated CCDs,” IEEE Trans. Nucl. Sci.,vol. 42, no. 6, pp. 2074 – 2081, Dec. 1995.
DOI: 10.1109/23.489255 - G. R. Hopkinson, V. Goiffon, A. Mohammadzadeh, “Random telegraph signals in proton irradiated CCDs and APS,” IEEE Trans. Nucl. Sci., vol. 55, no. 4, pp. 2197 – 2204, Aug. 2008.
DOI: 10.1109/TNS.2008.2000764 - J. Bogaerts, B. Dierickx, R. Mertens, “Random telegraph signals in a radiation-hardened CMOS active pixel sensor,” IEEE Trans. Nucl. Sci., vol. 49, no. 1, pp. 249–257, Feb. 2002.
DOI: 10.1109/TNS.2002.998649 - C. Virmontois et al., “Dark Current Random Telegraph Signals in Solid-State Image Sensors,” IEEE Trans. Nucl. Sci., vol. 60, no. 6, pp. 4323 – 4331, Dec. 2013. DOI: 10.1109/TNS.2013.2290236
- M. A. Karami, L. Carrara, C. Niclass, M. Fishburn, E. Charbon, “RTS Noise Characterization in Single-Photon Avalanche Diodes,” IEEE Electon Dev. Lett.,vol. 31, no. 7, pp. 692 – 694, Jul. 2010.
DOI: 10.1109/LED.2010.2047234 - F. Di Capua et al., “Random Telegraph Signal in Proton Irradiated Single-PhotonAvalanche Diodes,” IEEE Trans. Nucl. Sci., vol. 65, n0. 8, pp. 1654 – 1660, Aug. 2018.
DOI: 10.1109/TNS.2018.2814823 - L. Pancheri, D. Stoppa, “Low-noise Single-Photon Avalanche Diode in 0.15 µm CMOS Technology,” in Proc. European Conf., Solid-State Device Research (ESSDERC), Helsinki, Finland,2011, pp. 179 – 182.
DOI: 10.1109/ESSDERC.2011.6044205 - H. Xu, L. Pancheri, L. H. C. Braga, G. Dalla Betta, D. Stoppa, “Cross-talk characterization of dense single-photon avalanche diode arrays in CMOS 150-nm technology,” Opt. Eng., vol.55, no. 6, 067102, 2016.
DOI: 10.1117/1.OE.55.6.067102 - Ashland™ Gafchromic radiotherapy films, Ashland Advanced Materials, Bridgewater (NJ), USA, 2017.
Retrieved from: http://www.gafchromic.com/gafchromic-film/radiotherapy-films/EBT/index.asp; Retrieved on: Jun. 14, 2018 - M. Campajola, “Noise characterization of Single-Photon Avalanche Diodes,” M.Sc. dissertation, University “Federico II”, Dept. of Physics, Naples, Italy, 2017.
- M. J. Kirton, M. J. Uren, “Noise in solid-state microstructures: a new perspective on individual defects, interface states, and low-frequency (1/f) noise,” Adv. Phys., vol. 38, no. 4, pp. 367 – 468, 1989.
DOI: 10.1080/00018738900101122 - G. D. Watkins, J. W. Corbett, “Defects in irradiatedsilicon: electron paramagnetic resonance and electron-nuclear double resonance of the Si-E center,” Phys. Rev., vol.134, no. 5A, pp. 1359 – 1377, Jun. 1964.
DOI: 10.1103/PhysRev.134.A1359
|