Volume 1, Issue 2 (October 2016)

Original research papers

Radiochemistry

FIRST PRINCIPLE BASED MODELING AND INTERPRETATION OF CHEMICAL EXPERIMENTS ON SUPERHEAVY ELEMENT IDENTIFICATION

A.V. Zaitsevskii, Yu.A. Demidov, N.S. Mosyagin, L.V. Skripnikov, A.V. Titov

Pages: 132-137

DOI: 10.21175/RadJ.2016.02.024

Received: 17 MAR 2015, Received revised: 29 APR 2015, Accepted: 8 MAY 2015, Published online: 18 OCT 2016

Our latest advances in studies of actinide and superheavy element (SHE) chemistry using the shape-consistent two-component small-core relativistic pseudopotential (RPP) method and two-component relativistic density functional theory (2c–RDFT) are summarized. The features of these elements, due to large relativistic effects, are emphasized. The RPP model, leaving for explicit correlation treatment with both valence and subvalence (outercore) electrons, accounts for the finite nuclear size and incorporates relativistic effects (including the bulk of Breit interactions), providing a good basis for attaining optimal accuracy/cost ratio in the cases of large and strongly interfering relativistic and correlation effects, intrinsic for the heavy-atom compounds. The RPP/2c–RDFT approach allows one to solve the outercore-valence many-electron problem with moderate computational expenses while using practically exhaustive basis sets, optimized for the case of large differences between nl(j=l+1/2) and nl(j=l-1/2) one-electron states. Because of the exceptional role of thermochromatography on gold in the experiments on the “chemical” identification of SHEs with atomic numbers Z ≥ 112, the main attention was paid to the description of the SHE – gold interactions. Adsorption energies of SHEs on a gold surface were estimated using the cluster model. Its reliability was improved by monitoring the charge distributions in the vicinity of the adsorption site, taking account of the effects of the relaxation of the cluster compatible with its embedding into the crystal. The resulting desorption energy estimates for elements 113 and 120 single atoms from gold surface are substantially lower than the previously reported values.
  1. J. C. Phillips and L. Kleinman, "New Method for Calculating Wave Functions in Crystals and Molecules", Phys. Rev., vol. 116, pp.287-293, October 1959.
    DOI: 10.1103/PhysRev.116.287
  2. I. V. Abarenkov and V. Heine, "The Model Potential for Positive Ions", Philos. Mag., vol. 12, pp.529-537, 1965.
    DOI: 10.1080/14786436508218898
  3. V. Heine and I. V. Abarenkov, "A New Method for the Electronic Structure of Metals", Philos. Mag., vol. 9, pp.451-465, 1964.
    DOI: 10.1080/14786436408222957
  4. W. C. Ermler, R. B. Ross and P. A. Christiansen, "Spin-orbit coupling and other relativistic effects in atoms and molecules", Adv. Quant. Chem., vol. 19, pp.139-182, 1988.
    DOI: 10.1016/S0065-3276(08)60615-2
  5. Dolg M., Cao X. "Relativistic pseudopotentials: their development and scope of applications", Chem. Rev., vol. 112, pp. 403-480, 2011.
    DOI: 10.1021/cr2001383
  6. G. Theurich and N. A. Hill, "Self-consistent treatment of spin-orbit coupling in solids using relativistic fully separable ab initio pseudopotentials", Phys. Rev., vol. B64, p.073106, July 2001.
    DOI: 10.1103/PhysRevB.64.073106
  7. L. Seijo and Z. Barandiaran, "Relativistic ab-initio model potential calculations for molecules and embedded clusters", in Relativistic Electronic Structure Theory. Part 2. Applications, P. Schwerdtfeger, Ed. Amsterdam: Elsevier, 2004, pp.417-475.
    DOI: 10.1016/S1380-7323(04)80034-7
  8. N. S. Mosyagin, E. Eliav, A. V. Titov and U. Kaldor, "Comparison of relativistic effective core potential and all-electron Dirac-Coulomb calculations of mercury transition energies by the relativistic coupled-cluster method", J. Phys., vol. B33, pp.667-676, February 2000.
    DOI: 10.1088/0953-4075/33/4/305
  9. N. S. Mosyagin, A. V. Titov and Z. Latajka, "Generalized Relativistic Effective Core Potential: Gaussian Expansions of Potentials and Pseudospinors for Atoms Hg Through Rn", Int. J. Quantum Chem., vol. 63 , pp.1107-1122, 1997.
    DOI: 10.1002/(SICI)1097-461X(1997)63:6<1107::AID-QUA4>3.0.CO;2-0
  10. T. A. Isaev et al., "Accuracy of RCC-SD and PT2/CI methods in all-electron and RECP calculations on Pb and Pb2+", J. Phys., vol. B33, pp.5139-5149, November 2000.
    DOI: 10.1088/0953-4075/33/22/315
  11. I. I. Tupitsyn, N. S. Mosyagin and A. V. Titov, "Generalized relativistic effective core potential. I. Numerical calculations for atoms Hg through Bi", J. Chem. Phys., vol. 103 , pp.6548-6557, October 1995.
    DOI: 10.1063/1.470381
  12. A. V. Titov and N. S. Mosyagin, "Generalized Relativistic Effective Core Potential: Theoretical Grounds", Int. J. Quantum Chem., vol. 71, pp.359-401, 1999.
    DOI: 10.1002/(SICI)1097-461X(1999)71:5<359::AID-QUA1>3.0.CO;2-U
  13. A. V. Titov and N. S. Mosyagin, "Self-Consistent Relativistic Effective Core Potentials for Transition Metal Atoms: Cu, Ag, and Au", Structural Chem., vol. 6, pp.317-321, August 1995.
    DOI: 10.1007/BF02293125
  14. A. V. Titov and N. S. Mosyagin, "The Generalized Relativistic Effective Core Potential Method: Theory and Calculations", Russ. J. Phys. Chem., vol. 74, Suppl. 2, pp. S376-S387, 2000.
  15. A. N. Petrov, N. S. Mosyagin, A. V. Titov and I. I. Tupitsyn, "Accounting for the Breit interaction in relativistic effective core potential calculations of actinides", J. Phys., vol. B37, pp.4621-4637, December 2004.
    DOI: 10.1088/0953-4075/37/23/004
  16. N. S. Mosyagin, A. N. Petrov, A. V. Titov and I. I. Tupitsyn, "Generalized RECP Accounting for Breit Effects: Uranium, Plutonium and Superheavy Elements 112, 113, 114", in Recent Advances in the Theory of Chemical and Physical Systems, J.-P. Julien, et al., Eds. The Netherlands: Springer, 2006, pp.229-251.
    DOI: 10.1007/1-4020-4528-X_11
  17. N. S. Mosyagin, A. Zaitsevskii and A. V. Titov, "Shape-consistent Relativistic Effective Potentials of Small Atomic Cores", International Review of Atomic and Molecular Physics, vol. 1, pp.63-72, January-June 2010.
  18. A. V. Titov, A. O. Mitrushchenkov and I. I. Tupitsyn, "Effective core potential for pseudo-orbitals with nodes", Chem. Phys. Lett., vol. 185, pp.330-334, October 1991.
    DOI: 10.1016/S0009-2614(91)85069-9
  19. N. S. Mosyagin and A. V. Titov, "Accounting for correlations with core electrons by means of the generalized relativistic effective core potentials: Atoms Hg and Pb and their compounds", J. Chem. Phys., vol. 122, p.234106, June 2005.
    DOI: 10.1063/1.1914770
  20. L. V. Skripnikov, N. S. Mosyagin and A. V. Titov, "Relativistic coupled-cluster calculations of spectroscopic and chemical properties for element 120", Chem. Phys. Lett., vol. 555, pp.79-83, January 2013.
    DOI: 10.1016/j.cplett.2012.11.013
  21. T. Hangele, M. Dolg and P. Schwerdtfeger, "Relativistic energy-consistent pseudopotentials for superheavy elements 119 and 120 including quantum electrodynamic effects", J. Chem. Phys., vol. 138, p.174113, May 2013.
    DOI: 10.1063/1.4803148
  22. T. H. Dinh, V. A. Dzuba, V. V. Flambaum and J. S. M. Ginges, "Calculation of the spectrum of the superheavy element Z=120", Phys. Rev., vol. A78, p.054501, November 2008.
    DOI: 10.1103/PhysRevA.78.054501
  23. J. S. M. Ginges, V. A. Dzuba "Spectra of barium, radium, and element 120; application of the combined correlation potential, singles-doubles, and configuration interaction ab initio method", E-print: arXiv:1501.07327, 2015.
  24. A. Borschevsky, V. Pershina, E. Eliav and U. Kaldor, "Ab initio predictions of atomic properties of element 120 and its lighter group-2 homologues", Phys. Rev., vol. A87, p.022502, Februrary 2013.
  25. Yu. Ts. Oganessian et al., "Attempt to produce element 120 in the 244Pu + 58Fe reaction", Phys. Rev., vol. C79, p.024603, February 2009.
  26. J. H. Hamilton, S. Hofmann, Y. T. Oganessian, "Search for Superheavy Nuclei", //Annu. Rev. Nucl. Part. Sci., vol. 63, pp. 383-405, 2013.
    DOI: 10.1146/annurev-nucl-102912-144535
  27. A. Zaitsevskii, E. Rykova, N. S. Mosyagin, A. V. Titov, "Towards relativistic ECP/DFT description of chemical bonding in E112 compounds: spin-orbit and correlation effects in E112X versus HgX (X= H, Au)", Centr. Eur. J. Phys., vol. 4, p. 448, 2006.
    DOI: 10.2478/s11534-006-0029-7
  28. A. Zaitsevskii, A. V. Titov, "Interaction of copernicium with gold: Assessment of applicability of simple density functional theories",Inter. J. Quant. Chem., vol. 113, pp. 1772-1774, 2013.
    DOI: 10.1002/qua.24429
  29. A. Zaitsevskii, A. V. Titov, A. A. Rusakov, C. van Wüllen, "Ab initio study of element 113-gold interactions", Chem. Phys. Lett., vol. 508, pp. 329-331, 2011.
    DOI: 10.1016/j.cplett.2011.04.062
  30. R. Eichler et al., "Chemical characterization of element 112", Nature vol. 447, p. 72, 2007.
    DOI: 10.1038/nature05761
  31. R. Eichler, N. V. Aksenov, Y. V. Albin, A. V. Belozerov, G. A. Bozhikov, V. I. Chepigin, S. N. Dmitriev, R. Dressler, H. W. Gaeggeler, V. A. Gorshkov, G. Henderson, "Indication for a volatile element 114", Radiochim. Acta vol. 98, p. 133, 2010.
    DOI: 10.1524/ract.2010.1705
  32. V. Pershina, J. Anton, T. Jacob, "Theoretical predictions of adsorption behavior of elements 112 and 114 and their homologs Hg and Pb", J. Chem. Phys., vol. 131, p. 084713, 2009.
    DOI: 10.1063/1.3212449
  33. S. N. Dmitriev et al., "Pioneering experiments on the chemical properties of element 113", Mendeleev Commun., vol. 24, p. 253, 2014.
    DOI: 10.1016/j.mencom.2014.09.001
  34. A. A. Rusakov, Yu. A. Demidov, A. Zaitsevskii, "Estimating the adsorption energy of element 113 on a gold surface", Centr. Eur. J. Phys., vol. 11, pp. 1537-1540, 2013.
    DOI: 10.2478/s11534-013-0311-4
  35. Yu. Demidov, A. Zaitsevskii, R. Eichler, "First principles based modeling of the adsorption of atoms of element 120 on a gold surface", Phys. Chem. Chem. Phys., vol. 16 pp. 2268-2270, 2014.
    DOI: 10.1039/c3cp54485k
  36. C. van Wüllen, "A Quasirelativistic Two-component Density Functional and Hartree-Fock Program",
    Z. Phys. Chem., vol. 224, pp.413-426, 2010.
    DOI: 10.1524/zpch.2010.6114
  37. V. Pershina, J. Anton, T. Jacob, "Electronic structures and properties of MAu and MOH, where M= Tl and element 113", Chem. Phys. Lett., vol. 480, pp. 157-160, 2009.
    DOI: 10.1016/j.cplett.2009.08.069
  38. V. Pershina, A. Borschevsky, J. Anton, "Erratum: "Theoretical predictions of properties of group-2 elements including element 120 and their adsorption on noble metal surfaces'[J. Chem. Phys. 136, 134317 (2012)]", J. Chem. Phys., vol. 139, p.239901, 2013.
    DOI: 10.1063/1.4847855