|
PECULIARITY OF THE OPTICAL LIMITING EFFECT IN THE ORGANICS DOPED WITH THE FULLERENES AND WITH THE RELATIVE NANOPARTICLES
N.V. Kamanina
Pages: 148-157
DOI: 10.21175/RadJ.2017.03.032
Received: 2 MAR 2017, Received revised: 1 DEC 2017, Accepted: 5 DEC 2017, Published online: 23 DEC 2017
Abstract |
References |
Full Text (PDF)
Due to important features of the organic -conjugated nano-objects-doped systems, main properties of which can compete with the basic inorganic bulk material parameters, the study of the organics is dominant. As the effective nano-objects and the intermolecular sensitizers, the following nanoparticles, such as fullerenes, nanotubes, quantum dots, reduced graphene oxide, shungites, etc. have been considered. So many applications of the organic materials doped with nanoparticles have been proposed. Among them, the optical limiting effect occupies a unique place because this process permits, on the one side, to extend the knowledge about the photorefractive features of innovative materials and, from the other side, it is predicted to develop new devices to protect human eyes and technical equipment from high energy density of the laser beam. In the current short review paper, the optical limiting effect will be considered based on the results obtained by some scientific and engineering teams. The data will be shown at the different experimental conditions: the content of the nano-sensitizers can be changed, the range of the wave lengths can be extended, and the level of the attenuation of the laser beam can be varied. It should be mentioned that the experimental wave length can be as the following: 532, 805, 1047, 1064, 1315, 1500, 2940 nm. The materials and optical element based on the structured organics will be shown under the application of the traditional optical limiting scheme and using the four-wave mixing technique to indicate energy losses via diffraction under the Raman-Nath diffraction conditions as one of the optical limiting mechanisms. The level of the attenuation of the laser beam will be shown for the organics based on polyimides, 2-cycloactyl-amine-5-nitropyridine, 2-(n-prolinol)-5-nitropyridine, liquid crystals and other materials. Some ways to form organic photonic crystals will be discussed.
- M. Hasegawa, K. Horie, “Photophysics, photochemistry and optical properties of polyimides,” Prog. Polym. Sci., vol. 26, no. 2, pp. 259 – 335, Mar. 2001.
DOI: 10.1016/S0079-6700(00)00042-3
- B. G. Sumptera, D. W. Noida, M. D. Barnes, “Recent developments in the formation, characterization, and simulation of micron and nano-scale droplets of amorphous polymer blends and semi-crystalline polymers,” Polymer, vol. 44, no. 16, pp. 4389 – 4403, Jul. 2003.
DOI: 10.1016/S0032-3861(03)00428-2
- D.-Y. Wang et al., “Large optical power limiting induced by three-photon absorption of two stilbazolium-like dyes,” Chem. Phys. Lett., vol. 369, no. 5-6, pp. 621 – 626, Feb. 2003.
DOI: 10.1016/S0009-2614(03)00004-6
- A. G. Rozhin, Y. Sakakibara, M. Tokumoto, H. Kataura, Y. Achiba, “Near-infrared nonlinear optical properties of single-wall carbon nanotubes embedded in polymer film,” Thin Solid Films, vol. 464-465, pp. 368 – 372, Oct. 2004.
DOI: 10.1016/j.tsf.2004.07.005
- J. Wang, Y. Chen and W. J. Blau, “Carbon nanotubes and nanotube composites for nonlinear optical devices,” J. Mater. Chem., vol. 19, no. 40, pp. 7425 – 7443, Aug. 2009.
DOI: 10.1039/b906294g
- D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman and E. W. van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics, vol. 2, no. 1, pp. 60 – 200, 2010.
DOI: 10.1364/AOP.2.000060
- R. Kh. Manshad and Q. M. A. Hassan, “Optical limiting properties of magenta doped PMMA under CW laser illumination,” Adv. Appl. Sci. Res., vol. 3, no. 6, pp. 3696 – 3702, 2012.
Retrieved from: http://www.imedpub.com/articles/optical-limiting-properties-of-magenta-doped-pmma-under-cw-laserillumination.pdf; Retrieved on: Jan. 28, 2017
- L. Wang, R. Peng, Y. Zhao, F. Wu, “Optical Limiting and Stabilization Properties of a Liquid Dye on 1064 nm Nanosecond Laser Pulses,” Opt. Photonics J., vol. 3, pp. 34 – 37, Jun. 2013.
DOI: 10.4236/opj.2013.32B008
- D. Dini, M. J. F. Calvete and M. Hanack, “Nonlinear Optical Materials for the Smart Filtering of Optical Radiation,” Chem. Rev., vol. 116, no. 22, pp. 13043 – 13233, Nov. 2016.
DOI: 10.1021/acs.chemrev.6b00033 PMid: 27933768
- Y. Wang, M. Lv, J. Guo, Y.-W. Yang, “Carbon-based optical limiting materials,” Sci. China Chem., vol. 58, no. 12, pp. 1782 – 1791, Dec. 2015.
DOI: 10.1007/s11426-015-5480-0
- L. W. Tutt, T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quant. Electron., vol. 17, no. 4, pp. 299 – 338, 1993.
DOI: 10.1016/0079-6727(93)90004-S
- A. Kost et al., “Optical limiting with C60 solutions,” in Proc. Int. Symp. Opt. Eng. Photonics Aerospace Sensing SPIE vol. 2229, Orlando (FL), USA, 1994, pp. 78 – 90.
DOI: 10.1117/12.179574
- S. Couris, E. Koudoumas, A. A. Ruth and S. Leach, “Concentration and wavelength dependence of the effective third-order susceptibility and optical limiting of C60 in toluene solution,” J. Phys. B At. Mol. Opt. Phys., vol. 28, no. 20, pp. 4537 – 4554, Oct. 1995.
DOI: 10.1088/0953-4075/28/20/015
- V. P. Belousov et al., “Fullerenes: Structural, physical-chemical, and nonlinear optical properties,” J. Opt. Technol., vol. 64, pp. 1081 – 1109, 1997.
- F. Lin et al., “Optical limitation and bistability in fullerene,” J. Appl. Phys., vol. 74, no. 3, pp. 2140 – 2142, Aug. 1993.
DOI: 10.1063/1.354743
- J. R. Lindle, R. G. S. Pong, F. J. Bartoli, Z. H. Kafafi, “Nonlinear optical properties of the fullerenes C60 and C70 at 1.064 µm,” Phys. Rev. B, vol. 48, no. 13, pp. 9447 – 9451, Oct. 1993.
DOI: 10.1103/PhysRevB.48.9447
- K. McEwan, R. Hollins, “Two-photon-induced excited-state absorption in liquid crystal media,” Proc. Int. Symp. Opt. Eng. Photonics Aerospace Sensing SPIE vol. 2229, Orlando (FL), USA, 1994, pp. 122 – 130.
DOI: 10.1117/12.179578
- N. V. Kamanina, “Reverse saturable absorption in fullerene-containing polyimides. Applicability of the Förster model,” Opt. Commun., vol. 162, no. 4-6, pp. 228 – 232, Apr. 1999.
DOI: 10.1016/S0030-4018(99)00095-4.
- N. V. Kamanina, “Study of reverse absorption saturation in fullerene-containing polyimides,” Opt. Spectrosc., vol. 88, no. 6, pp. 944 – 947, Jun. 2000.
DOI: 10.1134/1.626905
- N. V. Kamanina, “Nonlinear optical study of fullerene-doped conjugated systems: new materials for nanophotonics applications,” in NATO Science Series – Series II: Mathematics, Physics and Chemistry: Organic Nanophotonics, vol. 100, F. Charra, V. M. Agranovich, F. Kajzar, Eds., Dordrecht, Netherlands: Springer, 2003, ch. 17, pp. 177 – 192, 2003.
DOI: 10.1007/978-94-010-0103-8_17
- I. M. Belousova et al., “Peculiarities of optical limiting mechanism in liquid, polymer, and solid-state fullerene-containing media,” Nonlinear Optics, vol. 27. no. 1-4. pp. 219 – 231, 2001.
- S. R. Mishra, H. S. Rawat, M. P. Joshi, S. C. Mehendale, “The role of non-linear scattering in optical limiting in C60,” J. Phys. B At. Mol. Opt. Phys., vol. 27, no. 8, pp. L157 – L163, Apr. 1994.
DOI: 10.1088/0953-4075/27/8/005
- S. R. Mishra, H. S. Rawat, M. P. Joshi, S. C. Mehendale, K. C. Rustagi, “Optical limiting in C60 and C70 solutions,” in Proc. Int. Symp. Opt. Imaging and Instrumentation SPIE vol. 2284, San Diego (CA), USA, 1994, pp. 220 – 229.
DOI: 10.1117/12.196132
- G. Gu et al., “Large non-linear absorption in C60 thin films,” J. Phys. B At. Mol. Opt. Phys., vol. 26, no. 15, pp. L451 – L455, Aug. 1993.
DOI: 10.1088/0953-4075/26/15/004
- N. D. Kumar et al., “Fabrication of GRIN-materials by photopolymerization of diffusion-controlled organic-inorganic nanocomposite materials,” in Proc. Symp. Better Ceramics Through Chemistry VII: Organic/Inorganic Hybrid Mater., San Francisco (CA), USA, 1996, pp. 553 – 558.
- I. C. Khoo, H. Li, Y. Liang, “Observation of orientation photorefractive effects in nematic liquid crystals,” Opt. Lett., vol. 19, no. 21, pp. 1723 – 1725, Nov. 1994.
DOI: 10.1364/OL.19.001723 PMid: 19855634
- J. R. Heflin, S. Wang, D. Marciu, C. Figura, R. Yordanov, “Optical limiting of C60, C60 charge-transfer complexes, and higher fullerenes from 532 to 750 nm,” in Proc. Fullerens and Photonics II SPIE vol. 2530, San Diego (CA), USA, 1995, pp. 176 – 187.
DOI: 10.1117/12.228117
- W. N. Sisk, D. H. Kang, M. Y. A. Raja, F. Farahi, “Photocurrent and optical limiting studies of C60 films and solutions,” Int. J. Optoelectronics, vol. 11, no. 5, pp. 325 – 331, Sep. 1997.
Retrieved from: https://www.researchgate.net/publication/297405410 Retrieved on: Jan. 28, 2017
- E. J. Nicol, “Optical properties of doped fullerenes in the superconducting state”, Physica B Condens. Matter., vol. 194-196, pp. 2065 – 2066, Feb. 1994.
DOI: 10.1016/0921-4526(94)91532-6
- P. J. Hood, B. P. Edmonds, D. G. McLean, D. M. Brandelik, “Comparison of optical power limiting in carbon-black suspensions, C60 in toluene and C60 in chloronaphthalene at 694 nm,” in Proc. Int. Symp. Opt. Eng. Photonics Aerospace Sensing SPIE vol. 2229, Orlando (FL), USA, 1994, pp. 91 – 99.
DOI: 10.1117/12.179575
- H. W. Kroto, J. E. Fischer and D. E. Cox, The Fullerenes, Oxford, UK: Pergamon Press Ltd., 1993.
- K. Hosoda, K. Tada, M. Ishikawa and K. Yoshino, “Effect of C60 doping on electrical and optical properties of poly[(disilanylene) oligophenylenes],” Jpn. J. Appl. Phys., vol. 36, no. 3B, pp. L372 – L375, Mar. 1997.
DOI: 10.1143/JJAP.36.L372
- M. Ouyang et al., “Study of a novel C60-2,6-bis(2,2-bicyanovinyl)pyridine complex thin film,” Appl. Phys. Lett., vol. 68, no. 17, pp. 2441 – 2443, Apr. 1996.
DOI: 10.1063/1.116161
- Z. Lu, S. H. Goh, S. Y. Lee, X. Sun and W. Ji, “Synthesis, characterization and nonlinear optical properties of copolymers ofbenzylaminofullerene with methyl methacrylate or ethyl methacrylate,” Polymer, vol. 40, no. 10, pp. 2863 – 2867, May 1999.
DOI: 10.1016/S0032-3861(98)00554-0
- Y. Wang, N. Herron and J. Caspar, “Bucky ball and quantum dot doped polymers: a new class of optoelectronic materials,” Mater. Sci. Eng. B, vol. 19, no. 1-2, pp. 61 – 66, Apr. 1993.
DOI: 10.1016/0921-5107(93)90166-K
- A. ltaya, I. Suzuki, Y. Tsuboi and H. Miyasaka, “Photoinduced electron transfer processes of C60-doped poly(N-vinylcarbazole) films as revealed by picosecond laser photolysis,” J. Phys. Chem. B, vol. 101, no. 26, pp. 5118 – 5123, Jun. 1997.
DOI: 10.1021/jp970303o
- K. Yoshino, X. H. Yin, S. Morita and A. A. Zakhidov, “Difference in doping effects of C60 and C70 in poly(3-hexyithiophene),” Jpn. J. App. Phys., vol. 32, no. 1A/B pp. L140 – L143, Jan. 1993.
DOI: 10.1143/JJAP.32.L140
- A. Kost, L. Tutt, M. B. Klein, T. K. Dougherty and W. E. Elias, “Optical limiting with C60 in polymethyl methacrylate,” Opt. Lett., vol. 18, no. 5, pp. 334 – 336, Mar. 1993.
DOI: 10.1364/OL.18.000334 PMid: 19802127
- S. M. Silence, C. A. Walsh, J. C. Scott and W. E. Moerner, “C60 sensitization ofphotorefractive polymers,” Appl. Phys. Lett., vol. 61, no. 25, pp. 2967 – 2969, Dec. 1992.
DOI: 10.1063/1.108033
- V. P. Belousov et al., “Nonlinear optical limiters of laser radiation based on reverse saturable absorption and stimulated reflection,” in Proc. Optoelectronics and High-Power Lasers and Applications SPIE vol. 3263, San Jose (CA), USA, 1998, pp. 124 – 130.
DOI: 10.1117/12.308342
- N. Kamanina et al., “Effect of fillerene doping on the absorption edge shift in COANP,” Mol. Mater., vol. 13, no. 1-4, pp. 275 – 280, 2000.
- N. V. Kamanina et al., “Effect of fullerenes C60 and C70 on the absorption spectrum of 2-cyclooctylamino-5-nitropyridine,” Opt. Spectrosc., vol. 89, no. 3, pp. 369 – 371, Sep. 2000.
DOI: 10.1134/1.1310701
- K. Lee, R. A. J. Janssen, N. S. Sariciftci and A. J. Heeger, “Direct evidence of photoinduced electron transfer in conducting-polymer—C60 composites by infrared photoexcitation spectroscopy,” Phys. Rev. B, vol. 49, no. 8, pp. 5781 – 5784, Feb. 1994.
DOI: 10.1103/PhysRevB.49.5781
- J. Bruening and B. Friedman, “Photoinduced electron transfer in conducting polymer C60 composites,” J. Chem. Phys., vol. 106, no. 23, pp. 9634 – 9638, Jun. 1997.
DOI: 10.1063/1.473862
- N. V. Kamanina, L. N. Kaporskii and B. V. Kotov, “Absorption spectra and optical limiting of the fullerene—polyimide system,” Opt. Commun., vol. 152, no. 4-6, pp. 280 – 282, Jul. 1998.
DOI: 10.1016/S0030-4018(98)00167-9
- N. V. Kamanina, L. N. Kaporskii and B. V. Kotov, “Study ofspectral features and the inverse absorption-saturation effect in the polyimide—fullerene system,” J. Opt. Technol., vol. 65, pp. 250 – 252, 1998.
- Y. A. Cherkasov et al., “Polyimides: New properties ofxerographic, thermoplastic, and liquid-crystal structures,” Proc. Int. Symp. Optical Science, Engineering and Instrumentation SPIE vol. 3471, San Diego (CA), USA, 1998, pp. 254 – 260.
DOI: 10.1117/12.328167
- N. V. Kamanina, “On the mechanisms of nonlinear optical attenuation in fullerene-containing π-conjugated organic systems,” Tech. Phys. Lett., vol. 27, no. 6, pp. 515 – 518, Jun. 2001.
DOI: 10.1134/1.1383842
- N. V. Kamanina, N. M. Kozhevnikov and N. A. Vasilenko, “Comparative investigations on dynamic characteristics of optically addressed liquid crystal spatial light modulators with photosensitive layers based on polyimide doped with dyes and fullerenes,” in Proc. Optoelectronics ’99 – Integrated Optoelectronic Devices SPIE vol. 3633, San Jose (CA), USA, 1999, pp. 122 – 128.
DOI: 10.1117/12.349315
- N. V. Kamanina, L. N. Kaporskii, A. Pozdnyakov and B. V. Kotov, “Optical limiting in organic polyimide systems doped with fullerenes and dyes,” in Proc. Symp. Integrated Optoelectronics SPIE vol. 3939, San Jose (CA), USA, 2000, pp. 228 – 233.
- N. V. Kamanina, N. A. Vasilenko, S. O. Kognovitsky and N. M. Kozhevnikov, “LC SLM with fullerene-dye-polyimide photosensitive layer,” Proc. Symp. Integrated Optoelectronics SPIE vol. 3951, San Jose (CA), USA, 2000, pp. 174 – 178.
DOI: 10.1117/12.379365
- N. V. Kamanina, L. N. Kaporskii, V. N. Sizov and D. I. Staselko, “Holographic recording in thin C70-doped polymer organic films,” Opt. Commun., vol. 185, no. 4-6, pp. 363 – 367, Nov. 2000.
DOI: 10.1016/S0030-4018(00)01014-2
- N. V. Kamanina, L. N. Kaporskii, V. N. Sizov and D. I. Stasel’ko, “Specific features of holographic recording of diffraction gratings in thin films of fullerene-containing organic systems,” Opt. Spectrosc., vol. 89, no. 5, pp. 651 – 653, Nov. 2000.
DOI: 10.1134/1.1328116
- N. V. Kamanina, V. N. Sizov and D. I. Stasel’ko, “Recording of thin phase holograms in polymer-dispersed liquid-crystal composites based on fullerene-containing p-conjugated organic systems,” Opt. Spectrosc., vol. 90, no. 1, pp. 1 – 3, 2001.
DOI: 10.1134/1.1343536
- N. V. Kamanina, V. N. Sizov and D. I. Stasel’ko, “Nonlinear optical properties of
p-conjugate organic materials: holographic grating recording and optical limiting effect,” in Proc. Symp. Integrated Optics SPIE vol. 4279, San Jose (CA), USA, 2001, pp. 171 – 174. DOI: 10.1117/12.429381
- J. Wasylak, K. Ozga, I. V. Kityk, J. Kucharsk, “IR optical limiting in europium and thulium doped oxide glasses,” Infrared Phys. Technol., vol. 45, no. 5, pp. 253 – 263, Jul. 2004.
DOI: 10.1016/j.infrared.2003.11.009
- I. V. Bagrov, A. P. Zhevlakov, O. P. Mikheeva, A. I. Sidorov, V. V. Sudarikov, “Optical confinement of a laser radiation in the 3.8–4.2 μm range in a composite material containing silver nanoparticles,” Tech. Phys. Lett., vol. 28, no. 7, pp. 552 – 553, Jul. 2002.
DOI: 10.1134/1.1498782
- N. V. Kamanina, M. O. Iskandarov and A. A. Nikitichev, “Optical properties of 2-(p-prolinol)-5-nitropyridine–fullerene system in the middle infrared range,” Tech. Phys. Lett., vol. 29, no. 4, pp. 337 – 339, Apr. 2003.
DOI: 10.1134/1.1573309
- N. V. Kamanina, I. V. Bagrov, I. M. Belousova, S. O. Kognovitskii, A. P. Zhevlakov, “Fullerene-doped p-conjugated organic systems under infrared laser irradiation,” Opt. Commun. vol. 194, no. 4-6, pp. 367 – 372, Jul. 2001.
DOI: 10.1016/S0030-4018(01)01322-0
- V. A. Shulev, A. K. Filippov, N. V. Kamanina, “Laser-induced processes in the IR range in nanocomposites with fullerenes and carbon nanotubes,” Tech. Phys. Lett., vol.32, no. 8, pp. 694 – 697, Aug. 2006.
DOI: 10.1134/S1063785006080177
- G. Ruani et al., “Optical limiting in the near infrared: a new approach,” in Book of Abstracts 2nd Int. Sypm. Optical Power Limiting, Venice, Italy, 2000, p. 69.
- D. Riehl and F. Fougeanet, “Thermodynamic modeling of optical limiting mechanisms in carbon-black suspensions (CBS),” Mol. Cryst. Liq. Cryst. Sci. Technol. B Nonlinear Opt., vol. 21, no. 1-4, pp. 391 – 398, 1999.
- L. Vivien, D. Riehl, P. Lançon, F. Hache, E. Anglaret, “Pulse duration and wavelength effects on the optical limiting behavior of carbon nanotube suspensions,” Opt. Lett., vol. 26, no. 4, pp. 223 – 225, Feb. 2001.
DOI: 10.1364/OL.26.000223 PMid: 18033554
- R. A. Ganeev et al., “Study of nonlinear optical characteristics of various media by the methods of z-scan and third harmonic generation of laser radiation,” Quantum Electron., vol. 32, no. 9, pp. 781 – 788, 2002.
DOI: 10.1070/QE2002v032n09ABEH002291
- Н. В. Каманина, “Структурные, спектральные и фоторефрактивные свойства нано- и биоструктутиорованных органических материалов, включая жидкие кристаллы,” Жидкие кристаллы и их практическое использование, т. 14, но. 1, стр. 5 – 12, 2014. (N. V. Kamanina et al., “Structural, spectral and photorefractive properties of the nano- and bio-doped organic materials including the liquid crystal ones,” Liquid crystal and their application, vol. 14, no. 1, pp. 5 – 12, 2014.)
Retrieved from: http://nano.ivanovo.ac.ru/journal/articles/37656article_2014_14_1_5-12.pdf Retrieved on: Jan. 28, 2017
- N. V. Kamanina, M. O. Iskandarov and A. A. Nikitichev, “Optical properties of a polyimide–fullerene system in the near infrared range (l = 1047 nm),” Tech. Phys. Lett., vol. 29, no. 8, pp. 672 – 675, Aug. 2003.
DOI: 10.1134/1.1606785
- N. V. Kamanina, S. Putilin, D. Stasel’ko, “Nano-, pico- and femtosecond study of fullerene-doped polymer-dispersed liquid crystals: holographic recording and optical limiting effect,” Synth. Met., vol. 127, no. 1-3, pp. 129 – 133, Mar. 2002.
DOI: 10.1016/S0379-6779(01)00602-6
- S. R. Mishra, H. S. Rawat, S. C. Mehendale, “Reverse saturable absorption and optical limiting in C60 solution in the near-infrared,” Appl. Phys. Lett., vol. 71, no. 1, pp. 46 – 48, Jul. 1997.
DOI: 10.1063/1.119464
- A. K. Augustine, S. Mathew, P. Radhakrishnan, V. P. N. Nampoori and M. Kailasnath, “Size Dependent Optical Nonlinearity and Optical Limiting Properties of Water Soluble CdSe Quantum Dots,” J. Nanosci., vol. 2014, no. 7, 623742, 2014
DOI: 10.1155/2014/623742
- U. Gurudas et al., “Saturable and reverse saturable absorption in silver nanodots at 532 nm using picosecond laser pulses,” J. Appl. Phys., vol. 104, no. 7, 073107, 2008.
DOI: 10.1063/1.2990056
- I. V. Rubtsov, D. V. Khudiakov, A. P. Nadtochenko, A. S. Lobach, A. P.Moravskii, “Orientational rotation of C60 molecules in various solutions,” JETP Lett., vol. 60, no. 5, pp. 325 – 330, Sep. 1994.
Retrieved from: http://www.jetpletters.ac.ru/ps/1347/article_20346.pdf; Retrieved on: Jan. 28, 2017
- I. V. Rubtsov, D. V. Khudiakov, A. P. Moravskii, A. P. Nadtochenko, “Orientational behavior of C70 molecules in chlorobenzene,” Chem. Phys. Lett., vol. 249, no. 1-2, pp. 101 – 105, Jan. 1996.
DOI: 10.1016/0009-2614(95)01375-X
- N. V. Kamanina, “Optical investigations of a C70-doped 2-cyclooctylamino-5-nitropyridine–liquid crystal system,” J. Opt. A: Pure Appl. Opt, vol. 4, no. 5, pp. 571 – 574, Aug. 2002.
DOI: 10.1088/1464-4258/4/5/313
- N. V. Kamanina, “Fullerene-dispersed liquid crystal structure: dynamic characteristics and self-organization processes,” Phys. Usp., vol. 48, no. 4, pp. 419 – 427, 2005.
DOI: 10.1070/PU2005v048n04ABEH002101
- N. V. Kamanina, A. Emandi, F. Kajzar and A.-J. Attias “Laser-Induced Change in the Refractive Index in the Systems Based on Nanostructured Polyimide: Comparative Study with Other Photosensitive Structures,” Mol. Cryst. Liq. Cryst., vol. 486, no. 1, pp. 1 – 11, 2008.
DOI: 10.1080/15421400801914319
- N. V. Kamanina and D. P. Uskokovic, “Refractive Index of Organic Systems Doped with Nano-Objects,” Mater. Manuf. Process, vol. 23, no. 6, pp. 552 – 556, 2008.
DOI: 10.1080/10426910802157722
- N. V. Kamanina, “Polyimide-fullerene nanostructured materials for nonlinear optics and solar energy applications,” J. Mater. Sci. Mater. Electron., vol. 23, no. 8, pp. 1538 – 1542, 2012.
DOI: 10.1007/s10854-012-0625-9
- N. V. Kamanina and A. I. Plekhanov, “Mechanisms of optical limiting infullerene-doped p-conjugated organic structures demonstrated with polyimide and COANP molecules,” Opt. Spectrosc., vol. 93, no. 3, pp. 408 – 415, Sep. 2002.
DOI: 10.1134/1.1509823
- M. I. Bessonov, N. P. Kuznetsov, M. M. Koton, “The transition temperatures for aromatic polymides and the physical foundations of their chemical classification,” Polymer Sci. U.S.S.R., vol. 20, no. 2, pp. 391 – 400, 1978.
DOI: 10.1016/0032-3950(78)90050-3
- N. V. Kamanina, E. F. Sheka, “Optical limiters and diffraction elements based on a COANP-fullerene system: Nonlinear optical properties and quantum-chemical simulation,” Opt. Spectrosc., vol. 96, no. 4, pp. 599 – 612, 2004.
DOI: 10.1134/1.1719152
- I. M. Belousova et al., “Photodynamics of nonlinear fullerene-containing media,” Proc. Laser Optics SPIE vol. 4353, St. Petersburg, Russia, 2000, pp. 75 – 83.
DOI: 10.1117/12.417716
- F. Diederich et al., “Fullerene Isomerism: Isolation of C2v,-C78 and D3-C78,” Science, vol. 254 no. 5039, pp. 1768 – 1770, Dec. 1991.
DOI: 10.1126/science.254.5039.1768 PMid: 17829240
- N. V. Kamanina et al., “Photorefractive Properties of Some Nano- and Bio-Structured Organic Materials,” J. Nanotech. Diagn. Treat., vol. 2, no. 1, pp. 2 – 5, 2014.
DOI: 10.12974/2311-8792.2014.02.01.1
- N. V. Kamanina, S. V. Serov, Y. Bretonniere and C. Andraud, “Organic Systems and Their Photorefractive Properties under the Nano- and Biostructuration: Scientific View and Sustainable Development,” J. Nanomater., vol. 2015, 278902, 2015.
DOI: 10.1155/2015/278902
- N. V. Kamanina, S. V. Likhomanova, Yu. A. Zubtcova, A. A. Kamanin and A. Pawlicka, “Functional Smart Dispersed Liquid Crystals for Nano- and Biophotonic Applications: Nanoparticles-Assisted Optical Bioimaging,” J. Nanomater., vol. 2016, 8989250, 2016.
DOI: 10.1155/2016/8989250
- N. V. Kamanina, S. V. Serov, V. P. Savinov, “Photorefractive Properties of Nanostructured Organic Materials Doped with Fullerenes and Carbon Nanotubes,” Tech. Phys. Lett., vol. 36, no. 1, pp. 40 – 42, Jan. 2010.
DOI: 10.1134/S106378501001013X
- N. V. Kamanina, Features of Optical Materials Modified with Effective Nanoobjects: Bulk Properties and Interface, New York (NY), USA: Nova Science Publishers, Inc., 2014.
- N. V. Kamanina, Yu. A. Zubtcova, A. A. Kukharchik, C. Lazar, I. Rau, “Control of the IR-spectral shift via modification of the surface relief between the liquid crystal matrixes doped with the lanthanide nanoparticles and the solid substrate,” Opt. Express, vol. 24, no. 2, pp. A270 – A275, Jan. 2016.
DOI: 10.1364/OE.24.00A270
|