Volume 2, Issue 3

Invited review paper

Biomaterials

PECULIARITY OF THE OPTICAL LIMITING EFFECT IN THE ORGANICS DOPED WITH THE FULLERENES AND WITH THE RELATIVE NANOPARTICLES

N.V. Kamanina

Pages: 148-157

DOI: 10.21175/RadJ.2017.03.032

Received: 2 MAR 2017, Received revised: 1 DEC 2017, Accepted: 5 DEC 2017, Published online: 23 DEC 2017

Due to important features of the organic -conjugated nano-objects-doped systems, main properties of which can compete with the basic inorganic bulk material parameters, the study of the organics is dominant. As the effective nano-objects and the intermolecular sensitizers, the following nanoparticles, such as fullerenes, nanotubes, quantum dots, reduced graphene oxide, shungites, etc. have been considered. So many applications of the organic materials doped with nanoparticles have been proposed. Among them, the optical limiting effect occupies a unique place because this process permits, on the one side, to extend the knowledge about the photorefractive features of innovative materials and, from the other side, it is predicted to develop new devices to protect human eyes and technical equipment from high energy density of the laser beam. In the current short review paper, the optical limiting effect will be considered based on the results obtained by some scientific and engineering teams. The data will be shown at the different experimental conditions: the content of the nano-sensitizers can be changed, the range of the wave lengths can be extended, and the level of the attenuation of the laser beam can be varied. It should be mentioned that the experimental wave length can be as the following: 532, 805, 1047, 1064, 1315, 1500, 2940 nm. The materials and optical element based on the structured organics will be shown under the application of the traditional optical limiting scheme and using the four-wave mixing technique to indicate energy losses via diffraction under the Raman-Nath diffraction conditions as one of the optical limiting mechanisms. The level of the attenuation of the laser beam will be shown for the organics based on polyimides, 2-cycloactyl-amine-5-nitropyridine, 2-(n-prolinol)-5-nitropyridine, liquid crystals and other materials. Some ways to form organic photonic crystals will be discussed.
  1. M. Hasegawa, K. Horie, “Photophysics, photochemistry and optical properties of polyimides,” Prog. Polym. Sci., vol. 26, no. 2, pp. 259 – 335, Mar. 2001.
    DOI: 10.1016/S0079-6700(00)00042-3
  2. B. G. Sumptera, D. W. Noida, M. D. Barnes, “Recent developments in the formation, characterization, and simulation of micron and nano-scale droplets of amorphous polymer blends and semi-crystalline polymers,” Polymer, vol. 44, no. 16, pp. 4389 – 4403, Jul. 2003.
    DOI: 10.1016/S0032-3861(03)00428-2
  3. D.-Y. Wang et al., “Large optical power limiting induced by three-photon absorption of two stilbazolium-like dyes,” Chem. Phys. Lett., vol. 369, no. 5-6, pp. 621 – 626, Feb. 2003.
    DOI: 10.1016/S0009-2614(03)00004-6
  4. A. G. Rozhin, Y. Sakakibara, M. Tokumoto, H. Kataura, Y. Achiba, “Near-infrared nonlinear optical properties of single-wall carbon nanotubes embedded in polymer film,” Thin Solid Films, vol. 464-465, pp. 368 – 372, Oct. 2004.
    DOI: 10.1016/j.tsf.2004.07.005
  5. J. Wang, Y. Chen and W. J. Blau, “Carbon nanotubes and nanotube composites for nonlinear optical devices,” J. Mater. Chem., vol. 19, no. 40, pp. 7425 – 7443, Aug. 2009.
    DOI: 10.1039/b906294g
  6. D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman and E. W. van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics, vol. 2, no. 1, pp. 60 – 200, 2010.
    DOI: 10.1364/AOP.2.000060
  7. R. Kh. Manshad and Q. M. A. Hassan, “Optical limiting properties of magenta doped PMMA under CW laser illumination,” Adv. Appl. Sci. Res., vol. 3, no. 6, pp. 3696 – 3702, 2012.
    Retrieved from: http://www.imedpub.com/articles/optical-limiting-properties-of-magenta-doped-pmma-under-cw-laserillumination.pdf;
    Retrieved on: Jan. 28, 2017
  8. L. Wang, R. Peng, Y. Zhao, F. Wu, “Optical Limiting and Stabilization Properties of a Liquid Dye on 1064 nm Nanosecond Laser Pulses,” Opt. Photonics J., vol. 3, pp. 34 – 37, Jun. 2013.
    DOI: 10.4236/opj.2013.32B008
  9. D. Dini, M. J. F. Calvete and M. Hanack, “Nonlinear Optical Materials for the Smart Filtering of Optical Radiation,” Chem. Rev., vol. 116, no. 22, pp. 13043 – 13233, Nov. 2016.
    DOI: 10.1021/acs.chemrev.6b00033
    PMid: 27933768
  10. Y. Wang, M. Lv, J. Guo, Y.-W. Yang, “Carbon-based optical limiting materials,” Sci. China Chem., vol. 58, no. 12, pp. 1782 – 1791, Dec. 2015.
    DOI: 10.1007/s11426-015-5480-0
  11. L. W. Tutt, T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quant. Electron., vol. 17, no. 4, pp. 299 – 338, 1993.
    DOI: 10.1016/0079-6727(93)90004-S
  12. A. Kost et al., “Optical limiting with C60 solutions,” in Proc. Int. Symp. Opt. Eng. Photonics Aerospace Sensing SPIE vol. 2229, Orlando (FL), USA, 1994, pp. 78 – 90.
    DOI: 10.1117/12.179574
  13. S. Couris, E. Koudoumas, A. A. Ruth and S. Leach, “Concentration and wavelength dependence of the effective third-order susceptibility and optical limiting of C60 in toluene solution,” J. Phys. B At. Mol. Opt. Phys., vol. 28, no. 20, pp. 4537 – 4554, Oct. 1995.
    DOI: 10.1088/0953-4075/28/20/015
  14. V. P. Belousov et al., “Fullerenes: Structural, physical-chemical, and nonlinear optical properties,” J. Opt. Technol., vol. 64, pp. 1081 – 1109, 1997.
  15. F. Lin et al., “Optical limitation and bistability in fullerene,” J. Appl. Phys., vol. 74, no. 3, pp. 2140 – 2142, Aug. 1993.
    DOI: 10.1063/1.354743
  16. J. R. Lindle, R. G. S. Pong, F. J. Bartoli, Z. H. Kafafi, “Nonlinear optical properties of the fullerenes C60 and C70 at 1.064 µm,” Phys. Rev. B, vol. 48, no. 13, pp. 9447 – 9451, Oct. 1993.
    DOI: 10.1103/PhysRevB.48.9447
  17. K. McEwan, R. Hollins, “Two-photon-induced excited-state absorption in liquid crystal media,” Proc. Int. Symp. Opt. Eng. Photonics Aerospace Sensing SPIE vol. 2229, Orlando (FL), USA, 1994, pp. 122 – 130.
    DOI: 10.1117/12.179578
  18. N. V. Kamanina, “Reverse saturable absorption in fullerene-containing polyimides. Applicability of the Förster model,” Opt. Commun., vol. 162, no. 4-6, pp. 228 – 232, Apr. 1999.
    DOI: 10.1016/S0030-4018(99)00095-4.
  19. N. V. Kamanina, “Study of reverse absorption saturation in fullerene-containing polyimides,” Opt. Spectrosc., vol. 88, no. 6, pp. 944 – 947, Jun. 2000.
    DOI: 10.1134/1.626905
  20. N. V. Kamanina, “Nonlinear optical study of fullerene-doped conjugated systems: new materials for nanophotonics applications,” in NATO Science Series – Series II: Mathematics, Physics and Chemistry: Organic Nanophotonics, vol. 100, F. Charra, V. M. Agranovich, F. Kajzar, Eds., Dordrecht, Netherlands: Springer, 2003, ch. 17, pp. 177 – 192, 2003.
    DOI: 10.1007/978-94-010-0103-8_17
  21. I. M. Belousova et al., “Peculiarities of optical limiting mechanism in liquid, polymer, and solid-state fullerene-containing media,” Nonlinear Optics, vol. 27. no. 1-4. pp. 219 – 231, 2001.
  22. S. R. Mishra, H. S. Rawat, M. P. Joshi, S. C. Mehendale, “The role of non-linear scattering in optical limiting in C60,J. Phys. B At. Mol. Opt. Phys., vol. 27, no. 8, pp. L157 – L163, Apr. 1994.
    DOI: 10.1088/0953-4075/27/8/005
  23. S. R. Mishra, H. S. Rawat, M. P. Joshi, S. C. Mehendale, K. C. Rustagi, “Optical limiting in C60 and C70 solutions,” in Proc. Int. Symp. Opt. Imaging and Instrumentation SPIE vol. 2284, San Diego (CA), USA, 1994, pp. 220 – 229.
    DOI: 10.1117/12.196132
  24. G. Gu et al., “Large non-linear absorption in C60 thin films,” J. Phys. B At. Mol. Opt. Phys., vol. 26, no. 15, pp. L451 – L455, Aug. 1993.
    DOI: 10.1088/0953-4075/26/15/004
  25. N. D. Kumar et al., “Fabrication of GRIN-materials by photopolymerization of diffusion-controlled organic-inorganic nanocomposite materials,” in Proc. Symp. Better Ceramics Through Chemistry VII: Organic/Inorganic Hybrid Mater., San Francisco (CA), USA, 1996, pp. 553 – 558.
  26. I. C. Khoo, H. Li, Y. Liang, “Observation of orientation photorefractive effects in nematic liquid crystals,” Opt. Lett., vol. 19, no. 21, pp. 1723 – 1725, Nov. 1994.
    DOI: 10.1364/OL.19.001723
    PMid: 19855634
  27. J. R. Heflin, S. Wang, D. Marciu, C. Figura, R. Yordanov, “Optical limiting of C60, C60 charge-transfer complexes, and higher fullerenes from 532 to 750 nm,” in Proc. Fullerens and Photonics II SPIE vol. 2530, San Diego (CA), USA, 1995, pp. 176 – 187.
    DOI: 10.1117/12.228117
  28. W. N. Sisk, D. H. Kang, M. Y. A. Raja, F. Farahi, “Photocurrent and optical limiting studies of C60 films and solutions,” Int. J. Optoelectronics, vol. 11, no. 5, pp. 325 – 331, Sep. 1997.
    Retrieved from: https://www.researchgate.net/publication/297405410
    Retrieved on: Jan. 28, 2017
  29. E. J. Nicol, “Optical properties of doped fullerenes in the superconducting state”, Physica B Condens. Matter., vol. 194-196, pp. 2065 – 2066, Feb. 1994.
    DOI: 10.1016/0921-4526(94)91532-6
  30. P. J. Hood, B. P. Edmonds, D. G. McLean, D. M. Brandelik, “Comparison of optical power limiting in carbon-black suspensions, C60 in toluene and C60 in chloronaphthalene at 694 nm,” in Proc. Int. Symp. Opt. Eng. Photonics Aerospace Sensing SPIE vol. 2229, Orlando (FL), USA, 1994, pp. 91 – 99.
    DOI: 10.1117/12.179575
  31. H. W. Kroto, J. E. Fischer and D. E. Cox, The Fullerenes, Oxford, UK: Pergamon Press Ltd., 1993.
  32. K. Hosoda, K. Tada, M. Ishikawa and K. Yoshino, “Effect of C60 doping on electrical and optical properties of poly[(disilanylene) oligophenylenes],” Jpn. J. Appl. Phys., vol. 36, no. 3B, pp. L372 – L375, Mar. 1997.
    DOI: 10.1143/JJAP.36.L372
  33. M. Ouyang et al., “Study of a novel C60-2,6-bis(2,2-bicyanovinyl)pyridine complex thin film,” Appl. Phys. Lett., vol. 68, no. 17, pp. 2441 – 2443, Apr. 1996.
    DOI: 10.1063/1.116161
  34. Z. Lu, S. H. Goh, S. Y. Lee, X. Sun and W. Ji, “Synthesis, characterization and nonlinear optical properties of copolymers ofbenzylaminofullerene with methyl methacrylate or ethyl methacrylate,” Polymer, vol. 40, no. 10, pp. 2863 – 2867, May 1999.
    DOI: 10.1016/S0032-3861(98)00554-0
  35. Y. Wang, N. Herron and J. Caspar, “Bucky ball and quantum dot doped polymers: a new class of optoelectronic materials,” Mater. Sci. Eng. B, vol. 19, no. 1-2, pp. 61 – 66, Apr. 1993.
    DOI: 10.1016/0921-5107(93)90166-K
  36. A. ltaya, I. Suzuki, Y. Tsuboi and H. Miyasaka, “Photoinduced electron transfer processes of C60-doped poly(N-vinylcarbazole) films as revealed by picosecond laser photolysis,” J. Phys. Chem. B, vol. 101, no. 26, pp. 5118 – 5123, Jun. 1997.
    DOI: 10.1021/jp970303o
  37. K. Yoshino, X. H. Yin, S. Morita and A. A. Zakhidov, “Difference in doping effects of C60 and C70 in poly(3-hexyithiophene),” Jpn. J. App. Phys., vol. 32, no. 1A/B pp. L140 – L143, Jan. 1993.
    DOI: 10.1143/JJAP.32.L140
  38. A. Kost, L. Tutt, M. B. Klein, T. K. Dougherty and W. E. Elias, “Optical limiting with C60 in polymethyl methacrylate,” Opt. Lett., vol. 18, no. 5, pp. 334 – 336, Mar. 1993.
    DOI: 10.1364/OL.18.000334
    PMid: 19802127
  39. S. M. Silence, C. A. Walsh, J. C. Scott and W. E. Moerner, “C60 sensitization ofphotorefractive polymers,” Appl. Phys. Lett., vol. 61, no. 25, pp. 2967 – 2969, Dec. 1992.
    DOI: 10.1063/1.108033
  40. V. P. Belousov et al., “Nonlinear optical limiters of laser radiation based on reverse saturable absorption and stimulated reflection,” in Proc. Optoelectronics and High-Power Lasers and Applications SPIE vol. 3263, San Jose (CA), USA, 1998, pp. 124 – 130.
    DOI: 10.1117/12.308342
  41. N. Kamanina et al., “Effect of fillerene doping on the absorption edge shift in COANP,” Mol. Mater., vol. 13, no. 1-4, pp. 275 – 280, 2000.
  42. N. V. Kamanina et al., “Effect of fullerenes C60 and C70 on the absorption spectrum of 2-cyclooctylamino-5-nitropyridine,” Opt. Spectrosc., vol. 89, no. 3, pp. 369 – 371, Sep. 2000.
    DOI: 10.1134/1.1310701
  43. K. Lee, R. A. J. Janssen, N. S. Sariciftci and A. J. Heeger, “Direct evidence of photoinduced electron transfer in conducting-polymer—C60 composites by infrared photoexcitation spectroscopy,” Phys. Rev. B, vol. 49, no. 8, pp. 5781 – 5784, Feb. 1994.
    DOI: 10.1103/PhysRevB.49.5781
  44. J. Bruening and B. Friedman, “Photoinduced electron transfer in conducting polymer C60 composites,” J. Chem. Phys., vol. 106, no. 23, pp. 9634 – 9638, Jun. 1997.
    DOI: 10.1063/1.473862
  45. N. V. Kamanina, L. N. Kaporskii and B. V. Kotov, “Absorption spectra and optical limiting of the fullerene—polyimide system,” Opt. Commun., vol. 152, no. 4-6, pp. 280 – 282, Jul. 1998.
    DOI: 10.1016/S0030-4018(98)00167-9
  46. N. V. Kamanina, L. N. Kaporskii and B. V. Kotov, “Study ofspectral features and the inverse absorption-saturation effect in the polyimide—fullerene system,” J. Opt. Technol., vol. 65, pp. 250 – 252, 1998.
  47. Y. A. Cherkasov et al., “Polyimides: New properties ofxerographic, thermoplastic, and liquid-crystal structures,” Proc. Int. Symp. Optical Science, Engineering and Instrumentation SPIE vol. 3471, San Diego (CA), USA, 1998, pp. 254 – 260.
    DOI: 10.1117/12.328167
  48. N. V. Kamanina, “On the mechanisms of nonlinear optical attenuation in fullerene-containing π-conjugated organic systems,” Tech. Phys. Lett., vol. 27, no. 6, pp. 515 – 518, Jun. 2001.
    DOI: 10.1134/1.1383842
  49. N. V. Kamanina, N. M. Kozhevnikov and N. A. Vasilenko, “Comparative investigations on dynamic characteristics of optically addressed liquid crystal spatial light modulators with photosensitive layers based on polyimide doped with dyes and fullerenes,” in Proc. Optoelectronics ’99 – Integrated Optoelectronic Devices SPIE vol. 3633, San Jose (CA), USA, 1999, pp. 122 – 128.
    DOI: 10.1117/12.349315
  50. N. V. Kamanina, L. N. Kaporskii, A. Pozdnyakov and B. V. Kotov, “Optical limiting in organic polyimide systems doped with fullerenes and dyes,” in Proc. Symp. Integrated Optoelectronics SPIE vol. 3939, San Jose (CA), USA, 2000, pp. 228 – 233.
  51. N. V. Kamanina, N. A. Vasilenko, S. O. Kognovitsky and N. M. Kozhevnikov, “LC SLM with fullerene-dye-polyimide photosensitive layer,” Proc. Symp. Integrated Optoelectronics SPIE vol. 3951, San Jose (CA), USA, 2000, pp. 174 – 178.
    DOI: 10.1117/12.379365
  52. N. V. Kamanina, L. N. Kaporskii, V. N. Sizov and D. I. Staselko, “Holographic recording in thin C70-doped polymer organic films,” Opt. Commun., vol. 185, no. 4-6, pp. 363 – 367, Nov. 2000.
    DOI: 10.1016/S0030-4018(00)01014-2
  53. N. V. Kamanina, L. N. Kaporskii, V. N. Sizov and D. I. Stasel’ko, “Specific features of holographic recording of diffraction gratings in thin films of fullerene-containing organic systems,” Opt. Spectrosc., vol. 89, no. 5, pp. 651 – 653, Nov. 2000.
    DOI: 10.1134/1.1328116
  54. N. V. Kamanina, V. N. Sizov and D. I. Stasel’ko, “Recording of thin phase holograms in polymer-dispersed liquid-crystal composites based on fullerene-containing p-conjugated organic systems,” Opt. Spectrosc., vol. 90, no. 1, pp. 1 – 3, 2001.
    DOI: 10.1134/1.1343536
  55. N. V. Kamanina, V. N. Sizov and D. I. Stasel’ko, “Nonlinear optical properties of
    p-conjugate organic materials: holographic grating recording and optical limiting effect,” in Proc. Symp. Integrated Optics SPIE vol. 4279, San Jose (CA), USA, 2001, pp. 171 – 174.
    DOI: 10.1117/12.429381
  56. J. Wasylak, K. Ozga, I. V. Kityk, J. Kucharsk, “IR optical limiting in europium and thulium doped oxide glasses,” Infrared Phys. Technol., vol. 45, no. 5, pp. 253 – 263, Jul. 2004.
    DOI: 10.1016/j.infrared.2003.11.009
  57. I. V. Bagrov, A. P. Zhevlakov, O. P. Mikheeva, A. I. Sidorov, V. V. Sudarikov, “Optical confinement of a laser radiation in the 3.8–4.2 μm range in a composite material containing silver nanoparticles,” Tech. Phys. Lett., vol. 28, no. 7, pp. 552 – 553, Jul. 2002.
    DOI: 10.1134/1.1498782
  58. N. V. Kamanina, M. O. Iskandarov and A. A. Nikitichev, “Optical properties of 2-(p-prolinol)-5-nitropyridine–fullerene system in the middle infrared range,” Tech. Phys. Lett., vol. 29, no. 4, pp. 337 – 339, Apr. 2003.
    DOI: 10.1134/1.1573309
  59. N. V. Kamanina, I. V. Bagrov, I. M. Belousova, S. O. Kognovitskii, A. P. Zhevlakov, “Fullerene-doped p-conjugated organic systems under infrared laser irradiation,” Opt. Commun. vol. 194, no. 4-6, pp. 367 – 372, Jul. 2001.
    DOI: 10.1016/S0030-4018(01)01322-0
  60. V. A. Shulev, A. K. Filippov, N. V. Kamanina, “Laser-induced processes in the IR range in nanocomposites with fullerenes and carbon nanotubes,” Tech. Phys. Lett., vol.32, no. 8, pp. 694 – 697, Aug. 2006.
    DOI: 10.1134/S1063785006080177
  61. G. Ruani et al., “Optical limiting in the near infrared: a new approach,” in Book of Abstracts 2nd Int. Sypm. Optical Power Limiting, Venice, Italy, 2000, p. 69.
  62. D. Riehl and F. Fougeanet, “Thermodynamic modeling of optical limiting mechanisms in carbon-black suspensions (CBS),” Mol. Cryst. Liq. Cryst. Sci. Technol. B Nonlinear Opt., vol. 21, no. 1-4, pp. 391 – 398, 1999.
  63. L. Vivien, D. Riehl, P. Lançon, F. Hache, E. Anglaret, “Pulse duration and wavelength effects on the optical limiting behavior of carbon nanotube suspensions,” Opt. Lett., vol. 26, no. 4, pp. 223 – 225, Feb. 2001.
    DOI: 10.1364/OL.26.000223
    PMid: 18033554
  64. R. A. Ganeev et al., “Study of nonlinear optical characteristics of various media by the methods of z-scan and third harmonic generation of laser radiation,” Quantum Electron., vol. 32, no. 9, pp. 781 – 788, 2002.
    DOI: 10.1070/QE2002v032n09ABEH002291
  65. Н. В. Каманина, “Структурные, спектральные и фоторефрактивные свойства нано- и биоструктутиорованных органических материалов, включая жидкие кристаллы,” Жидкие кристаллы и их практическое использование, т. 14, но. 1, стр. 5 – 12, 2014. (N. V. Kamanina et al., “Structural, spectral and photorefractive properties of the nano- and bio-doped organic materials including the liquid crystal ones,” Liquid crystal and their application, vol. 14, no. 1, pp. 5 – 12, 2014.)
    Retrieved from: http://nano.ivanovo.ac.ru/journal/articles/37656article_2014_14_1_5-12.pdf
    Retrieved on: Jan. 28, 2017
  66. N. V. Kamanina, M. O. Iskandarov and A. A. Nikitichev, “Optical properties of a polyimide–fullerene system in the near infrared range (l = 1047 nm),” Tech. Phys. Lett., vol. 29, no. 8, pp. 672 – 675, Aug. 2003.
    DOI: 10.1134/1.1606785
  67. N. V. Kamanina, S. Putilin, D. Stasel’ko, “Nano-, pico- and femtosecond study of fullerene-doped polymer-dispersed liquid crystals: holographic recording and optical limiting effect,” Synth. Met., vol. 127, no. 1-3, pp. 129 – 133, Mar. 2002.
    DOI: 10.1016/S0379-6779(01)00602-6
  68. S. R. Mishra, H. S. Rawat, S. C. Mehendale, “Reverse saturable absorption and optical limiting in C60 solution in the near-infrared,” Appl. Phys. Lett., vol. 71, no. 1, pp. 46 – 48, Jul. 1997.
    DOI: 10.1063/1.119464
  69. A. K. Augustine, S. Mathew, P. Radhakrishnan, V. P. N. Nampoori and M. Kailasnath, “Size Dependent Optical Nonlinearity and Optical Limiting Properties of Water Soluble CdSe Quantum Dots,” J. Nanosci., vol. 2014, no. 7, 623742, 2014
    DOI: 10.1155/2014/623742
  70. U. Gurudas et al., “Saturable and reverse saturable absorption in silver nanodots at 532 nm using picosecond laser pulses,” J. Appl. Phys., vol. 104, no. 7, 073107, 2008.
    DOI: 10.1063/1.2990056
  71. I. V. Rubtsov, D. V. Khudiakov, A. P. Nadtochenko, A. S. Lobach, A. P.Moravskii, “Orientational rotation of C60 molecules in various solutions,” JETP Lett., vol. 60, no. 5, pp. 325 – 330, Sep. 1994.
    Retrieved from: http://www.jetpletters.ac.ru/ps/1347/article_20346.pdf;
    Retrieved on: Jan. 28, 2017
  72. I. V. Rubtsov, D. V. Khudiakov, A. P. Moravskii, A. P. Nadtochenko, “Orientational behavior of C70 molecules in chlorobenzene,” Chem. Phys. Lett., vol. 249, no. 1-2, pp. 101 – 105, Jan. 1996.
    DOI: 10.1016/0009-2614(95)01375-X
  73. N. V. Kamanina, “Optical investigations of a C70-doped 2-cyclooctylamino-5-nitropyridine–liquid crystal system,” J. Opt. A: Pure Appl. Opt, vol. 4, no. 5, pp. 571 – 574, Aug. 2002.
    DOI: 10.1088/1464-4258/4/5/313
  74. N. V. Kamanina, “Fullerene-dispersed liquid crystal structure: dynamic characteristics and self-organization processes,” Phys. Usp., vol. 48, no. 4, pp. 419 – 427, 2005.
    DOI: 10.1070/PU2005v048n04ABEH002101
  75. N. V. Kamanina, A. Emandi, F. Kajzar and A.-J. Attias “Laser-Induced Change in the Refractive Index in the Systems Based on Nanostructured Polyimide: Comparative Study with Other Photosensitive Structures,” Mol. Cryst. Liq. Cryst., vol. 486, no. 1, pp. 1 – 11, 2008.
    DOI: 10.1080/15421400801914319
  76. N. V. Kamanina and D. P. Uskokovic, “Refractive Index of Organic Systems Doped with Nano-Objects,” Mater. Manuf. Process, vol. 23, no. 6, pp. 552 – 556, 2008.
    DOI: 10.1080/10426910802157722
  77. N. V. Kamanina, “Polyimide-fullerene nanostructured materials for nonlinear optics and solar energy applications,” J. Mater. Sci. Mater. Electron., vol. 23, no. 8, pp. 1538 – 1542, 2012.
    DOI: 10.1007/s10854-012-0625-9
  78. N. V. Kamanina and A. I. Plekhanov, “Mechanisms of optical limiting infullerene-doped p-conjugated organic structures demonstrated with polyimide and COANP molecules,” Opt. Spectrosc., vol. 93, no. 3, pp. 408 – 415, Sep. 2002.
    DOI: 10.1134/1.1509823
  79. M. I. Bessonov, N. P. Kuznetsov, M. M. Koton, “The transition temperatures for aromatic polymides and the physical foundations of their chemical classification,” Polymer Sci. U.S.S.R., vol. 20, no. 2, pp. 391 – 400, 1978.
    DOI: 10.1016/0032-3950(78)90050-3
  80. N. V. Kamanina, E. F. Sheka, “Optical limiters and diffraction elements based on a COANP-fullerene system: Nonlinear optical properties and quantum-chemical simulation,” Opt. Spectrosc., vol. 96, no. 4, pp. 599 – 612, 2004.
    DOI: 10.1134/1.1719152
  81. I. M. Belousova et al., “Photodynamics of nonlinear fullerene-containing media,” Proc. Laser Optics SPIE vol. 4353, St. Petersburg, Russia, 2000, pp. 75 – 83.
    DOI: 10.1117/12.417716
  82. F. Diederich et al., “Fullerene Isomerism: Isolation of C2v,-C78 and D3-C78,” Science, vol. 254 no. 5039, pp. 1768 – 1770, Dec. 1991.
    DOI: 10.1126/science.254.5039.1768
    PMid: 17829240
  83. N. V. Kamanina et al., “Photorefractive Properties of Some Nano- and Bio-Structured Organic Materials,” J. Nanotech. Diagn. Treat., vol. 2, no. 1, pp. 2 – 5, 2014.
    DOI: 10.12974/2311-8792.2014.02.01.1
  84. N. V. Kamanina, S. V. Serov, Y. Bretonniere and C. Andraud, “Organic Systems and Their Photorefractive Properties under the Nano- and Biostructuration: Scientific View and Sustainable Development,” J. Nanomater., vol. 2015, 278902, 2015.
    DOI: 10.1155/2015/278902
  85. N. V. Kamanina, S. V. Likhomanova, Yu. A. Zubtcova, A. A. Kamanin and A. Pawlicka, “Functional Smart Dispersed Liquid Crystals for Nano- and Biophotonic Applications: Nanoparticles-Assisted Optical Bioimaging,” J. Nanomater., vol. 2016, 8989250, 2016.
    DOI: 10.1155/2016/8989250
  86. N. V. Kamanina, S. V. Serov, V. P. Savinov, “Photorefractive Properties of Nanostructured Organic Materials Doped with Fullerenes and Carbon Nanotubes,” Tech. Phys. Lett., vol. 36, no. 1, pp. 40 – 42, Jan. 2010.
    DOI: 10.1134/S106378501001013X
  87. N. V. Kamanina, Features of Optical Materials Modified with Effective Nanoobjects: Bulk Properties and Interface, New York (NY), USA: Nova Science Publishers, Inc., 2014.
  88. N. V. Kamanina, Yu. A. Zubtcova, A. A. Kukharchik, C. Lazar, I. Rau, “Control of the IR-spectral shift via modification of the surface relief between the liquid crystal matrixes doped with the lanthanide nanoparticles and the solid substrate,” Opt. Express, vol. 24, no. 2, pp. A270 – A275, Jan. 2016.
    DOI: 10.1364/OE.24.00A270