|
CHARACTERISTICS OF 1.6 MeV PROTON-IRRADIATED GaN-BASED SENSORS
Dovile Meskauskaite, Eugenijus Gaubas, Tomas Ceponis, Jevgenij Pavlov, Vytautas Rumbauskas
Pages: 118-123
DOI: 10.21175/RadJ.2017.02.025
Received: 10 FEB 2017, Received revised: 27 APR 2017, Accepted: 20 JUN 2017, Published online: 28 OCT 2017
Abstract |
References |
Full Text (PDF)
High response speed sensors made of thin GaN-based structures can be important for the optical readout of the radiation signals in harsh radiation environment at hadron accelerator facilities. In this work, the metal-semiconductor-metal structure sensors formed on the MOCVD grown GaN heterostructures have been studied. The proton-induced luminescence (PI-L) and the BELIV (barrier evaluation by linearly increasing voltage) transients have simultaneously been recorded during 1.6 MeV proton irradiation emitted by a Tandetron type accelerator. The PI-L and BELIV measurements allowed for tracing the evolution of the parameters of recombination. The radiation damage on GaN-based sensors has been examined by capacitance-voltage (C-V) and deep-level transient spectroscopy (DLTS) methods. The dominant radiation defects introduced by 1.6 MeV proton beam have been unveiled.
- S. Fujita, “Wide-bandgap semiconductor materials: For their full bloom,” Jpn. J. Appl. Phys., vol. 54, no. 3. p. 30101, Feb. 2015.
DOI: 10.7567/JJAP.54.030101
- S. J. Pearton et al., “GaN-based diodes and transistors for chemical, gas, biological and pressure sensing,” J. Phys. Condens. Matter, vol. 16, no. 29, pp. R961–R994, Jul. 2004.
DOI: 10.1088/0953-8984/16/29/R02
- M. Sugiura et al., “Study of radiation detection properties of GaN pn diode,” Jpn. J. Appl. Phys., vol. 55, no. 5S, p. 05FJ02, Mar. 2016.
DOI: 10.7567/JJAP.55.05FJ02
- M. Moll, “Radiation tolerant semiconductor sensors for tracking detectors,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 565, no. 1, pp. 202–211, Sep. 2006.
DOI: 10.1016/j.nima.2006.05.001
- P. J. Sellin and J. Vaitkus, “New materials for radiation hard semiconductor dectectors,” Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., vol. 557, no. 2, pp. 479–489, Feb. 2006.
DOI: 10.1016/j.nima.2005.10.128
- E. Gaubas et al., “Correlative analysis of the in situ changes of carrier decay and proton induced photoluminescence characteristics in chemical vapor deposition grown GaN,” Appl. Phys. Lett., vol. 104, no. 6, p. 62104, Jan. 2014.
DOI: 10.1063/1.4865499
- P. Pittet et al., “PL characterization of GaN scintillator for radioluminescence-based dosimetry,” Opt. Mater. (Amst)., vol. 31, no. 10, pp. 1421–1424, Aug. 2009.
DOI: 10.1016/j.optmat.2008.09.012
- Xeon 1 Power Blue LED OSB4XNE1E1E VER C.3, OptoSupply International, Hong Kong, China.
Retrieved from: http://www.optosupply.com/uppic/201686103526.pdf Retrieved on: Apr. 26, 2017.
- E. Gaubas, T. Ceponis and J. V. Vaitkus, Pulsed capacitance technique for evaluation of barrier structures. Saarbrucken-Berlin: LAMBERT Academic Publishing, 2013.
- J. F. Ziegler, M. D. Ziegler and J. P. Biersack, “SRIM - The stopping and range of ions in matter (2010),” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 268, no. 11–12, pp. 1818–1823, Jun. 2010.
DOI: 10.1016/j.nimb.2010.02.091
- E. Gaubas, A. Uleckas, J. Vaitkus, J. Raisanen and P. Tikkanen, “Instrumentation for the in situ control of carrier recombination characteristics during irradiation by protons,” Rev. Sci. Instrum., vol. 81, no. 5, p. 53303, May 2010.
DOI: 10.1063/1.3429944 PMid: 20515132
- D. V. Lang, “Deep-level transient spectroscopy: A new method to characterize traps in semiconductors,” J. Appl. Phys., vol. 45, no. 7, pp. 3023–3032, 1974.
DOI: 10.1063/1.1663719
- FT 1030 Deep-Level Transient Spectroscopy System, PhysTech GmbH, Moosburg, Germany.
Retrieved from: http://www.phystech.de/products/dlts/dlts.htm Retrieved on: Apr. 26, 2017.
- E. Gaubas et al., “Correlated evolution of barrier capacitance charging, generation, and drift currents and of carrier lifetime in Si structures during 25 MeV neutrons irradiation,” Appl. Phys. Lett., vol. 101, no. 23, p. 232104, Dec. 2012.
DOI: 10.1063/1.4769370
- E. Gaubas, I. Brytavskyi, T. Ceponis, V. Kalendra and A. Tekorius, “Spectroscopy of deep traps in Cu2S-CdS junction structures,” Materials, vol. 5, no. 12, pp. 2597–2608, Dec. 2012.
DOI: 10.3390/ma5122597
- M. A. Reshchikov, H. Morkoç, S. S. Park and K. Y. Lee, “Two charge states of dominant acceptor in unintentionally doped GaN: Evidence from photoluminescence study,” Appl. Phys. Lett., vol. 81, no. 26, p. 4970, Dec. 2002.
DOI: 10.1063/1.1531227
- J. Rodrigues et al., “Influence of neutron irradiation and annealing on the optical properties of GaN,” Phys. Status Solidi C, vol. 9, no. 3-4, pp. 1016-1020, Feb. 2012.
DOI: 10.1002/pssc.201100200
- M. A. Reshchikov, D. O. Demchenko, A. Usikov, H. Helava and Y. Makarov, “Carbon defects as sources of the green and yellow luminescence bands in undoped GaN,” Phys. Rev. B, vol. 90, no. 23, p. 235203, Dec. 2014.
DOI: 10.1103/PhysRevB.90.235203
- J. L. Lyons, A. Janotti and C. G. Van de Walle, “Carbon impurities and the yellow luminescence in GaN,” Appl. Phys. Lett., vol. 97, no. 15, p. 152108, Oct. 2010.
DOI: 10.1063/1.3492841
- M. A. Reshchikov and H. Morkoç, “Luminescence properties of defects in GaN,” J. Appl. Phys., vol. 97, no. 6, p. 61301, Mar. 2005.
DOI: 10.1063/1.1868059
- N. Nepal, M. L. Nakarmi, J. Y. Lin and H. X. Jiang, “Photoluminescence studies of impurity transitions in AlGaN alloys,” Appl. Phys. Lett., vol. 89, no. 9, p. 92107, Aug. 2006.
DOI: 10.1063/1.2337856
- K. H. Lee and J. H. Crawford, “Luminescence of the F center in sapphire,” Phys. Rev. B, vol. 19, no. 6, pp. 3217–3221, Mar. 1979.
DOI: 10.1103/PhysRevB.19.3217
- A. Castaldini, A. Cavallini, A. Castaldini and L. Polenta, “Deep levels and irradiation effects in n-GaN,” J. Phys. Condens. Matter, vol. 12, no. 49, pp. 10161–10167, 2000.
DOI: 10.1088/0953-8984/12/49/315
- A. Y. Polyakov et al., “Radiation effects in GaN materials and devices,” J. Mater. Chem. C, vol. 1, no. 5, pp. 877–887, 2013.
DOI: 10.1039/C2TC00039C
- S. J. Pearton, R. Deist, F. Ren, L. Liu, A. Y. Polyakov and J. Kim, “Review of radiation damage in GaN-based materials and devices,” J. Vac. Sci. Technol. A, vol. 31, no. 5, p. 50801, Apr. 2013.
DOI: 10.1116/1.4799504
- A. Hierro et al., “Optically and thermally detected deep levels in n -type Schottky and p+-n GaN diodes,” Appl. Phys. Lett., vol. 76, no. 21, pp. 3064–3066, May 2000.
DOI: 10.1063/1.126580
- E. Patrick et al., “Modeling proton irradiation in AlGaN/GaN HEMTs: understanding the increase of critical voltage,” IEEE Trans. Nucl. Sci., vol. 60, no. 6, pp. 4103–4108, Dec. 2013.
DOI: 10.1109/TNS.2013.2286115
- B. D. Weaver et al., “On the radiation tolerance of AlGaN/GaN HEMTs,” ECS J. Solid State Sci. Technol., vol. 5, no. 7, pp. Q208–Q212, Jun. 2016.
DOI: 10.1149/2.0281607jss
- E. E. Patrick, M. Choudhury, F. Ren, S. J. Pearton and M. E. Law, “Simulation of radiation effects in AlGaN/GaN HEMTs,” ECS J. Solid State Sci. Technol., vol. 4, no. 3, pp. Q21–Q25, Jan. 2015.
DOI: 10.1149/2.0181503jss
|