Volume 2, Issue 3

Original research papers

Medical Physics

ESTIMATION OF MEAN GLANDULAR DOSE IN MAMMOGRAPHY USING VOXEL PHANTOM AND MONTE CARLO SIMULATION

Katarina Karadžić, Vuk Karadžić

Pages: 200-203

DOI: 10.21175/RadJ.2017.03.040

Received: 15 FEB 2017, Received revised: 31 MAY 2017, Accepted: 4 JUL 2017, Published online: 23 DEC 2017

Mammography presents one of the most precise methods for detection of irregularities inside the breast. Its most important function is discovering diseases like cancer at an early phase. Although mammography uses a low dose x-ray system, the examination still poses certain risk for a patient. Mean glandular dose gives the best representation of risk involved for a patient undergoing mammography examination. In this study, we estimated adipose, glandular and total dose to the breast using Monte Carlo simulations. For this purpose, we designed a voxel breast phantom. Simulations were performed using MCNPX code. Verification of phantom design and simulations was done by comparing the results with those published in similar studies.
  1. K. Kerlikowske, D. Grady, S. M. Rubin, C. Sandrock and V. L. Ernster, “Efficacy of screening mammography. A meta-analysis,” J. Am. Med. Assoc., vol. 273, no. 2, pp. 149 – 54, Jan. 1995.
    DOI: 10.1001/jama.1995.03520260071035
    PMid: 7799496
  2. D. R. Dance, “Monte Carlo calculation of conversion factors for the estimation of mean glandular breast dose,” Phys. Med. Biol., vol. 35, no. 9, pp. 1211 – 1219, Sep. 1990.
    DOI: 10.1088/0031-9155/35/9/002
  3. D. R. Dance, K. C. Young and R. E. van Engen, “Further factors for the estimation of mean glandular dose using the United Kingdom, European and IAEA breast dosimetry protocols,” Phys. Med. Biol., vol. 54, no. 14, pp. 4361 – 4372, Jun. 2009.
    DOI: 10.1088/0031-9155/54/14/002
    PMid: 19550001
  4. J. M. Boone, “Glandular breast dose for monoenergetic and high-Energy x-ray beams: Monte Carlo assessment,” Radiology, vol. 213, no. 1, pp. 23 – 37, Oct. 1999.
    DOI: 10.1148/radiology.213.1.r99oc3923
    PMid: 10540637
  5. D. R. Dance et al., “Breast Dosimetry Using High-resolution Voxel Phantoms,” Radiat. Prot. Dosim., vol. 114, no. 1-3, pp. 359 – 363, May 2005.
    DOI: 10.1093/rpd/nch510
    PMid: 15933137
  6. K. Bliznakova, Z. Bliznakov, V. Bravou, Z. Kolitsi and N Pallikarakis, “A three-dimensional breast software phantom for mammography simulation,” Phys. Med. Biol., vol. 48, no. 22, pp. 3699–3719, Nov. 2003.
    DOI: 10.1088/0031-9155/48/22/006
    PMid: 14680268
  7. A. K. W. Ma, S. Gunn, D. G. Darambara, “Introducing DeBRa: A detailed breast model for radiological studies,” Phys. Med. Biol., vol. 54, no. 14, pp. 4533 – 4545, Jul. 2009.
    DOI: 10.1088/0031-9155/54/14/010
    PMid: 19556683
  8. L. Gholamkar, A. A. Mowlavi, M. Sadeghi and M. Athari, “Assessment of Mean Glandular Dose in Mammography System with Different Anode-Filter Combinations Using MCNP Code,” Iran J. Radiol., vol. 13, no. 4, e36484, Oct. 2016.
    DOI: 10.5812/iranjradiol.36484
    PMid: 27895876
    PMCid: PMC5117115
  9. A. K. W. Ma, A. Alghamdi, “Development of a realistic computational breast phantom for dosimetric simulations,” Nucl. Sci. Thech., vol. 2, pp. 147 – 152, 2011;
    DOI: 10.15669/pnst.2.147
  10. A. K. W. Ma, D. G. Darambara, A. Stewart, S. Gunn, E. Bullard, “Mean glandular dose estimation using MCNPX for a digital breast tomosynthesis system with tungsten/aluminum and tungsten/aluminum+silver x-ray anode-filter combinations,” Med. Phys., vol. 35, no. 12, pp. 5278 – 5289, Dec. 2008.
    DOI: 10.1118/1.3002310
    PMid: 19175087
  11. I. Sechopoulos, S. Suryanarayanan, S. Vedantham, C. D’Orsi, A. Karellas, “Computation of the glandular radiation dose in digital tomosynthesis of the breast,” Med. Phys., vol. 34, no. 1, pp. 221 – 232, Jan. 2007.
    DOI: 10.1118/1.2400836
    PMid: 17278508
    PMCid: PMC4280100
  12. J. Zhang, B. Bednarz and X. G. Xu, “An Investigation of Voxel Geometries for MCNP-based Radiation Dose Calculations,” Health phys., vol. 91, suppl. 2, pp. S59 – S65, Nov. 2006.
    DOI: 10.1097/01.HP.0000234039.58356.de
    PMid: 17023800
  13. G. Verdú et al., “Mammographic Dosimetry Using MCNP-4B,” J. Nucl. Sci. Tech., vol. 37, suppl. 1, pp. 875 – 879, 2000.
    DOI: 10.1080/00223131.2000.10875015
  14. D. B. Pelotiwz, “MCNPX user’s manual version 2.7.0,” Los Alamos National Library, Los Alamos (NM), USA, Rep. LA-CP-11-00438, 2011.
  15. G. R. Hammerstein et al., “Absorbed radiation dose in mammography,” Radiology, vol. 130, no. 2, pp. 485 – 491, Feb. 1979.
    DOI: 10.1148/130.2.485
    PMid: 760167
  16. J. H. Hubbell and S. M. Seltzer, “Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients,” NIST, Gaithersburg (MD), USA, 2004.
    Retrieved from: https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients;
    Retrieved on: Dec 20, 2016
  17. Tissue substitutes in radioation dosimetry and measurements, ICRU Report 44, ICRU, Bethesda (MD), USA, 1989.
  18. K. Cranley, B. J. Gilmore, G. W. A. Fogarty and L. Desponds, Catalogue of Diagnostic X-ray Spectra and Other Data, IPEM Report 78, IPEM, New York (NY), USA, 1997.