Volume 1, Issue 1 (April 2016)

Original research papers

Radiation Protection

NON-TARGETED EFFECTS OF FACTORS FROM BLOOD SERUMS OF CHERNOBYL POPULATIONS

Pavel Marozik, Irma Mosse, Mikhail Marozik, Sergei Melnov, Colin Seymour, Carmel Mothersil

Pages: 51-56

DOI: 10.21175/RadJ.2016.01.10

Received: 06 MAR 2015, Received revised: 25 MAR 2015, Accepted: 29 MAR 2015, Published Online: 28 APR 2016

In the present work, the phenomenon of bystander effects (transfer of damaging factors from affected cells to intact cells) induced in vivo has been studied. A newly developed method allows evaluation of the effects of bystander factors from sera of different groups of populations on immortalized culture of human keratinocytes. This method has serious advantages as compared to that which was used earlier. The level of damaging bystander factors in blood of people irradiated by the Chernobyl accident was estimated. Affected population groups included liquidators of the Chernobyl accident and people living and working in areas of Gomel region contaminated by radionuclides. The data clearly shows that blood serum samples of irradiated populations contain some kind of factors, induced in vivo and able to cause cell damage when transferred to in vitro conditions. These factors are able to circulate in blood stream for more than 20 years.
  1. H. Nagasawa and J.B. Little, “Induction of Sister Chromatid Exchanges by Extremely Low Doses of Alpha-Particles,” Cancer Res., vol. 52, no. 22, pp.6394-6396, Nov. 1992.
  2. B.E. Lehnert and E.H. Goodwin, “A New Mechanism For DNA Alterations Induced by Alpha Particles Such as Those Emitted by Radon and Radon Progeny,” Envir. Health Persp., vol.105, suppl. 5, pp.1095–1101, Sep. 1997.
    DOI: 10.2307/3433515
  3. E.I. Azzam, S.M. de Toledo, T. Gooding and J.B. Little, “Intercellular Communication is Involved in the Bystander Regulation of Gene Expression in Human Cells Exposed to Very Low Fluencies of Alpha Particles,” Rad. Res., vol.150, no. 5, pp.497–504, Nov. 1998.
    DOI: 10.2307/3579865
  4. A. Bishayee, D.V. Rao and R.W. Howell, “Evidence for Pronounced Bystander Effects Caused by Nonuniform Distributions of Radioactivity Using a Novel Three-Dimensional Tissue Culture Model,” Rad. Res., vol.152, no.51, pp.88-97, July 1999.
    DOI: 10.2307/3580054
  5. C. Mothersill and C. Seymour, “Medium from Irradiated Human Epithelial Cells but not Human Fibroblasts Reduces the Clonogenic Survival of Unirradiated Cells,” Int. J. Rad. Biol., vol.71, no.4, pp.421-427, Apr. 1997.
    DOI: 10.1080/095530097144030
  6. K.M. Prise, O.V. Belyakov, M. Folkard and B.D. Micheal, “Studies on Bystander Effects in Human Fibroblasts Using a Charged Particle Microbeam,” Int. J. Rad. Biol., vol.74, no. 6, pp. 793-798, Dec. 1998.
    DOI: 10.1080/095530098141087
  7. I. Emerit et al., “Transferable Clastogenic Activity in Plasma from Persons Exposed as Salvage Personnel of the Chernobyl Reactor,” J. Canc. Res. Clin. Oncol., vol.120, no. 9, pp. 558-561, Sep. 1994.
    DOI: 10.1007/BF01221035
  8. K. Baverstock and O.V. Belyakov, “Some Important Questions Connected With Non-Targeted Effects”, Mutat. Res., vol.687, no. 1-2, pp. 84–88, May 2010.
    DOI: 10.1016/j.mrfmmm.2010.01.002
  9. I. Emerit, “Superoxide Generation by Clastogenic Factors,” in Free Radicals, Lipoproteins And Membrane Lipids, A. Crastes De Paulet, L. Douste-Blazy And R. Paoletti, Eds., New York (NY), USA: Plenum Press (Springer), 1991, sec. 1, pp.99-104.
    DOI: 10.1007/978-1-4684-7427-5_10
  10. I. Mosse, P. M. Marozik, C. Seymour and C. Mothersill, “The Effect of Melanin on the Bystander Effect in Human Keratinocytes,” Mutat. Res., vol.597, no. 1-2, pp. 133-137, May 2006.
    DOI: 10.1016/j.mrfmmm.2005.09.006
  11. I. Emerit et al., “Clastogenic Factors in the Plasma of Chernobyl Accident Recovery Workers: Anticlastogenic Effect of Ginkgo Biloba Extract,” Rad. Res., vol.144, no. 2, pp. 198-205, Nov. 1995.
    DOI: 10.2307/3579259
  12. I. Emerit et al., “Oxidative Stress-Related Clastogenic Factors in Plasma from Chernobyl Liquidators: Protective Effects of Antioxidant Plant Phenols, Vitamins and Oligoelements,” Mutat. Res., vol.377, no. 2, pp. 239-246, July 1997.
    DOI: 10.1016/S0027-5107(97)00080-8