|
DOSE COEFFICIENTS FOR MONOCLONAL ANTIBODIES AND ANTIBODY FRAGMENTS LABELED BY ZIRCONIUM-89
M.V. Zhukovsky, Hesham M.H. Zakaly
Pages: 152–158
DOI: 10.21175/RadJ.2018.03.026
Received: 5 JUN 2018, Received revised: 22 NOV 2018, Accepted: 27 NOV 2018, Published online: 28 FEB 2019
Abstract |
References |
Full Text (PDF)
The purpose was to assess the behavior of monoclonal antibodies (MAb) and their fragments labeled by 89Zr after injecting them into the human body for the purpose of positron emission tomography (PET), as well as to assess absorbed doses in organs and tissues with maximum radiation exposure. The biokinetic model has been built on the base reference data about the behavior of MAb and their fragments and on the literature data on the excretion of chelate complexes from the human body. The cumulative activity of 89Zr in organs and tissues per Bq of administered activity was calculated. For the most exposed organs, average absorbed doses for organs and tissues were calculated. The organs which had the highest doses, when 89Zr was injected into the human body associated with intact monoclonal antibodies, are the spleen, the liver, and the heart wall. The estimated doses on these organs are 1.69, 1.48 and 1.08 mGy/MBq, respectively. When the injection associated with the fragments of monoclonal antibodies is considered, the most exposed organs are the kidneys with the doses of 0.939 mGy/MBq for F(ab’)) and 0.920 mGy/MBq for F(ab')2.
- A. M. Wu, P. D. Senter, “Arming antibodies: prospects and challenges for immunoconjugates,” Nat. Biotechnol., vol. 23, no. 9, pp.1137 – 1146, Sep. 2005.
DOI: 10.1038/nbt1141 PMid: 16151407 - A. M. Wu, “Engineered antibodies for molecular imaging of cancer”, Methods, vol. 65, no. 1, pp. 139 – 147, Jan. 2014.
DOI: 10.1016/j.ymeth.2013.09.015 PMid: 24091005 PMCid: PMC3947235 - T. J. Wadas, E. H. Wong, G. R. Weisman, C. J. Anderson, “Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease,” Chem. Rev. vol. 110, no. 5, pp. 2858 – 2902, Apr. 2010.
DOI: 10.1021/cr900325h PMid: 20415480 PMCid: PMC2874951 - Nuclear Decay Data for Dosimetric Calculations, ICRP Publication 107, ICRP, Ottawa, Canada, 2008.
DOI: 10.1016/j.icrp.2008.10.004 PMid: 19285593 - W. B. Cai et al., “Quantitative PET of EGFR expression in xenograft-bearing mice using Cu-64-labeled cetuximab, a chimeric anti-EGFR monoclonal antibody,” Eur. J. Nucl. Med. Mol. Imaging, vol. 34, no. 6, pp. 850 – 858, Jun. 2007.
DOI: 10.1007/s00259-006-0361-6 PMid: 17262214 - P. Paudyal et al., “Imaging and biodistribution of Her2/neu expression in non-small cell lung cancer xenografts with 64Cu-labeled trastuzumab PET,” Cancer. Sci., vol. 101. no. 4, pp. 1045 – 1050, Apr. 2010.
DOI: 10.1111/j.1349-7006.2010.01480.x PMid: 20219072 - P. K. E. Borjesson et al., “Performance of Immuno-Positron Emission Tomography with Zirconium-89 Labeled Chimeric Monoclonal Antibody U36 in the Detection of Lymph Node Metastases in Head and Neck Cancer Patients,” Clin. Cancer. Res.,vol. 12, no. 7, pp. 2133 – 2140, Apr. 2006.
DOI: 10.1158/1078-0432.CCR-05-2137 PMid: 16609026 - I. Verel et al., “High-quality 124I-labelled monoclonal antibodies for use as PET scouting agents prior to 131I-radioimmunotherapy,” Eur. J. Nucl. Med. Mol. Imaging, vol. 31, no. 12, pp. 1645 – 1652, Dec. 2004.
DOI: 10.1007/s00259-004-1632-8 PMid: 15290121 - J. P. Holland, M. J. Williamson, J. S. Lewis, “Unconventional Nuclides for Radiopharmaceuticals,” Mol. Imaging, vol. 9, no. 1, pp. 1 – 20, Jan. 2010.
DOI: 10.2310/7290.2010.00008 PMid: 20128994 PMCid: PMC4962336 - W. E. Meijs, J. D. M. Herscheid, H. J. Haisma, H. M. Pinedo, “Evaluation of desferal as a bifunctional chelating agent for labeling antibodies with Zr-89,” Appl. Radiat. Isot., vol. 43, no. 12, pp. 1443 – 1447, Dec. 1992.
DOI: 10.1016/0883-2889(92)90170-J - C. R. Fletcher, “The radiological hazards of zirconium-95 and niobium-95,” Health Phys., vol. 16, no. 2, pp. 209 – 220, Feb. 1969.
DOI: 10.1097/00004032-196902000-00011< PMid: 5772185 - S. M. Chiavenna, J. P. Jaworski, A. Vendrell, “State of the art in anti-cancer mAbs,” J. Biomed. Sci., vol. 24, no. 15, pp. 1 – 12, Feb. 2017.
DOI: 10.1186/s12929-016-0311-y - L. Lindenberg et al., “Dosimetry and first human experience with 89Zr-panitumumab,” Am. J. Nucl. Med. Mol. Imaging, vol. 7, no. 4, pp. 195 – 203, 2017.
PMid: 28913158 PMCid: PMC5596322 - Radiation Dose to Patients from radiopharmaceuticals: A Compendium of Current Information Related to Frequently Used Substances,ICRP Publication 128, ICRP, Ottawa, Canada, 2015.
DOI: 10.1177/0146645314558019 PMid: 26069086 - Human Alimentary Tract Model for Radiological Protection, ICRP Publication 100, ICRP, Ottawa, Canada, 2006.
DOI: 10.1016/j.icrp.2006.03.004 PMid: 17188183 - R. W. Leggett, “The biokinetics of inorganic cobalt in the human body,” Sci. Total Environ., vol. 389, no. 2-3, pp. 259 – 269, Jan. 2008.
DOI: 10.1016/j.scitotenv.2007.08.054 PMid: 17920105 - R. W. Leggett, “A biokinetic model for zinc for use in radiation protection,” Sci. Total Environ., vol. 420, pp. 1 – 12, Mar. 2012.
DOI: 10.1016/j.scitotenv.2012.01.013 PMid: 22326317 - W. B. Li, M. Greiter, U. Oeh, C. Hoeschen, “Reliability of a new biokinetic model of zirconium in internal dosimetry: part II, parameter sensitivity analysis,” Health Phys., vol. 101, no. 6. pp. 677 – 692, Dec. 2011.
DOI: 10.1097/HP.0b013e318226edc0 - J. A. Carrasquillo et al., “(124)I-huA33 Antibody PET of Colorectal Cancer,” J. Nucl. Med., vol. 52, no. 8, pp. 1173 – 1180, Jul. 2011.
DOI: 10.2967/jnumed.110.086165 PMid: 21764796 PMCid: PMC3394182 - A. L. Klibanov et al., “Blood Clearance of Radiolabeled Antibody: Enhancement by Lactosamination and Treatment with Biotin-Avidin or Anti-Mouse IgG Antibodies” J. Nucl. Med., vol. 29, no. 12, pp. 1951 – 1956, Dec. 1988.
PMid: 2848113 - D. R. Mould, K. R. D. Sweeney, “The pharmacokinetics and pharmacodynamics of monoclonal antibodies – mechanistic modeling applied to drug development,” Curr. Opin. Drug Discov. Devel, vol. 10, no. 1, pp. 84 – 96, Jan. 2007.
PMid: 17265746 - E. C. Dijkers et al., “Biodistribution of 89Zr-trastuzumab and PET Imaging of HER2-Positive Lesions in Patients With Metastatic Breast cancer,” Clin. Pharmacol. Ther., vol. 87, no. 5, pp. 586 – 592, May 2010.
DOI: 10.1038/clpt.2010.12 PMid: 20357763 - I. Buchmann et al., “A comparison of the biodistribution and biokinetics of 99mTc-anti-CD66 mAb BW 250/183 and 99mTc-anti-CD45 mAb YTH 24.5 with regard to suitability for myeloablative radioimmunotherapy,” Eur. J. Nucl. Med. Mol. Imaging, vol. 30, no. 5, pp. 667 – 673, May 2003.
DOI: 10.1007/s00259-002-1106-9 PMid: 12599012 - C.-A. Vogel et al., “Direct comparison of a radioiodinated intact chimeric anti-CEA MAb with its F(ab`)2, fragment in nude mice bearing different human colon cancer xenografts,” Br. J. Cancer, vol. 68, no. 4, pp. 684 – 690, Oct. 1993.
DOI: 10.1038/bjc.1993.410 PMid: 8398694 PMCid: PMC1968595 - T. Olafsen et al., “Optimizing Radiolabeled Engineered Anti-p185HER2 Antibody Fragments for in vivo Imaging,” Cancer Res., vol. 65, no. 13, pp. 5907 – 5916, 2005.
DOI: 10.1158/0008-5472.CAN-04-4472 PMid: 15994969 PMCid: PMC4161125 - J. W. Stathler et al., “The Retention of 14C-DTPA in Human Volunteers after Inhalation or Intravenous Injection,” Health Phys., vol. 44, no. 1. pp. 45 – 52, Jan. 1983.
DOI: 10.1097/00004032-198301000-00006 - V. F. Khokhryakov et al., “Successful DTPA Therapy in the Case of 239Pu Penetration via Injured Skin Exposed to Nitric Acid,” Radiat. Prot. Dosim., vol, 105, no. 1-4, pp. 499 – 502, Jul. 2003.
DOI: 10.1093/oxfordjournals.rpd.a006291 PMid: 14527017 - WinAct version 1.0, ORNL, Oak Ridge (TN), USA, 2002.
Retrieved from: https://www.ornl.gov/crpk/software; Retrieved on: May 18, 2018 - M. Andersson et al., “IDAC-Dose 2.1, an internal dosimetry program for diagnostic nuclear medicine based on the ICRP adult reference voxel phantoms,” EJNMMI Res. vol. 7, no. 88, Nov. 2017.
DOI: 10.1186/s13550-017-0339-3 - Adult Reference Computational Phantoms, ICRP Publication 110, ICRP, Ottawa, Canada, 2009.
DOI: 10.1016/j.icrp.2009.09.001 PMid: 19897132
|