Volume 1, Issue 2 (October 2016)

Original research papers

Biomaterials

THE BI-SUBSTITUTED HYDROXYAPATITE AS RADIO-OPAQUE MATERIAL

Gabriela Ciobanu, Ana Maria Bargan, Constantin Luca, Octavian Ciobanu

Pages: 101-104

DOI: 10.21175/RadJ.2016.02.018

Received: 14 MAR 2015, Received revised: 7 APR 2015, Accepted: 13 APR 2015, Published online: 18 OCT 2016

This study relates to a new apatite material which is biocompatible and exhibits radio-opacity, enhancing its utility in the dental and medical fields. The bismuth-substituted hydroxyapatite was obtained by means of wet chemical method, that is, by co-precipitation reactions. The effects of the bismuth substitution for calcium on the morphology and optical proprieties of the resulting powder were investigated by scanning electron microscopy (SEM) coupled with X-ray analysis (EDX), X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Bi-substituted hydroxyapatite is radio-opaque, and it can be detected by X-rays and computed tomography.
  1. M. Stoltenberg, S. Juhl and G. Danscher, “Bismuth ions are metabolized into autometallographic traceable bismuth-sulphur quantum dots”, Eur. J. Histochem., vol. 51, pp. 53-57, 2007.
  2. F.C.M. Driessens, “The mineral in bone, dentin and tooth enamel”, Bull. Soc. Chim. Belg., vol. 89, pp. 663-689, 1980.
    DOI: 10.1002/bscb.19800890811
  3. L.L. Hench H.A. and Paschall, “Direct chemical bonding of bioactive glass-ceramic materials and bone”, J. Biomed. Mater. Res. Symp., vol. 4, pp. 25–42, 1973.
  4. N. Patel et al., “A comparative study on the in vivo behaviour of hydroxyapatite and silicon-substituted hydroxyapatite granules”, J. Mater. Sci.: Mater. Med., vol. 13, pp. 1199–1206, 2002.
    DOI: 10.1023/A:1021114710076
  5. Y. Doi, T. Shibutani, Y. Moriwake, T. Kajimoto and Y. Iwayama, “Sintered carbonate apatites as bioresorbable bone substitutes”, J. Biomed. Mater. Res., vol. 39, pp. 603–610, 1997.
    DOI: 10.1002/(SICI)1097-4636(19980315)39:4<603::AID-JBM15>3.0.CO;2-7
  6. T. Tamm and M. Peld, “Computational study of cation substitutions in apatites”, J. Solid State Chem., vol. 179, pp. 1581-1587, 2006.
    DOI: 10.1016/j.jssc.2006.02.012
  7. J.H. Shepherd, D.V. Shepherd and S.M. Best, “Substituted hydroxyapatites for bone repair”, J. Mater. Sci. - Mater. M., vol. 23, pp. 2335-2347, 2012.
    DOI: 10.1007/s10856-012-4598-2
  8. V. Aina et al., “Magnesium- and strontium-co-substituted hydroxyapatite: the effects of doped-ions on the structure and chemico-physical properties”, J. Mater. Sci. Mater. Med., vol. 23, pp. 2867-2879, 2012.
    DOI: 10.1007/s10856-012-4767-3
  9. I.R. Lima et al., “Understanding the impact of divalent cation substitution on hydroxyapatite: An in vitro multiparametric study on biocompatibility”, J. Biomed. Mater. Res. A, vol. 98A, pp. 351–358, 2011.
    DOI: 10.1002/jbm.a.33126
  10. T.N. Kim et al., “Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite”, J. Mater. Sci. Mater. Med., vol. 9, pp. 129–134, 1998.
    DOI: 10.1023/A:1008811501734
  11. N. Rameshbabu et al., “Antibacterial nanosized silver substituted hydroxyapatite: synthesis and characterization”, J. Biomed. Mater. Res. A, vol. 80A, pp. 581–591, 2007.
    DOI: 10.1002/jbm.a.30958
  12. A.M. Bargan, G. Ciobanu, C. Luca and E. Horoba, “Influence of the citric acid on the cerium substituted hydroxyapatite morphology”, Studia UBB Chemia, vol. 4, pp. 137-145, 2013.
  13. G. Ciobanu, S. Ilisei, M. Harja and C. Luca, “Removal of Reactive Blue 204 dye from aqueous solutions by adsorption onto nanohydroxyapatite”, Sci. Adv. Mater., vol. 5, pp. 1090–1096, 2013.
    DOI: 10.1166/sam.2013.1558
  14. R.D. Shannon, “Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides”, Acta Crystallogr. A, vol. 32, pp. 751-767, 1976.
    DOI: 10.1107/S0567739476001551
  15. D.G. Guo, A.H. Wang, Y. Han and K.W. Xu, “Characterization, physicochemical properties and biocompatibility of La-incorporated apatites”, Acta Biomater., vol. 5, pp. 3512-3523, 2009.
    DOI: 10.1016/j.actbio.2009.05.026
  16. S. Murugan and S. Ramakrishna, “Development of cell-responsive nanophase hydroxyapatite for tissue engineering”, Am. J. Biochem. Biotechnol., vol. 3, pp. 118-124, 2007.
    DOI: 10.3844/ajbbsp.2007.118.124
  17. R.J. Chung, M.F. Hsieh, R.N. Panda and T.S. Chin, “Hydroxyapatite layers deposited from aqueous solutions on hydrophilic silicon substrate”, Surf. Coat. Tech., vol. 165, pp. 194-200, 2003.
    DOI: 10.1016/S0257-8972(02)00731-4