Volume 1, Issue 1 (April 2016)

Original research papers

Radiation Effects

THE INFLUENCE OF DEVICE GEOMETRY ON THE PARTIALLY DEPLETED SOI TRANSISTOR TID HARDNESS

Ivan Shvetsov-Shilovskiy, Anatoly Smolin, Pavel Nekrasov, Anastasia Ulanova, Alexander Nikiforov

Pages: 20-25

DOI: 10.21175/RadJ.2016.01.04

Received: 15 MAR 2015, Received revised: 15 MAY 2015, Accepted: 18 MAY 2015, Published Online: 28 APR 2016

The research is focused on the differences in radiation behavior for transistors of different geometry, body tie contact types, device layer thickness and biasing.
  1. A.V. Sogoyan, A.I. Chumakov and A.Y. Nikiforov, “Method for Predicting CMOS Parameter Degradation Due to Ionizing Radiation with Regard to Operating Time and Conditions,” Russ. Microel., vol. 28, no. 4, pp. 224-235, 1999.
  2. M. Li et al., “Including Radiation Effects and Dependencies on Process-Related Variability in Advanced Foundry SPICE Models Using a New Physical Model and Parameter Extraction Approach,” IEEE Trans. Nucl. Sci., vol. 58, no. 6, pp. 2876-2882, Dec. 2011.
    DOI: 10.1109/TNS.2011.2171503
  3. K.O. Petrosyants, L.M. Sambursky, I.A. Kharitonov and A.P. Yatmanov, “SOI/SOS MOSFET Compact Macromodel Taking into Account Radiation Effects,” Russ. Microel., vol. 40, no 7, pp. 457‑462, Dec. 2011.
    DOI: 10.1134/S106373971107016X
  4. K.O. Petrosyants, I.A. Kharitonov, L.M. Sambursky, V.N. Bogatyrev, Z.M. Povarnitcyna and E.S. Drozdenko, “Simulation of Total Dose Influence on Analog-Digital SOI/SOS CMOS Circuits with EKV-RAD Macromodel,” inIEEE East-West Des.& Test Symp., Rostov-on-Don, Russia, Sep.27‑30, 2013,pp.1-6.
    DOI: 10.1109/EWDTS.2013.6673145
  5. A.V. Kirgizova, P.K. Skorobogatov, A.Y. Nikiforov, L.N. Kessarinskii, G.G. Davydov and A.G. Petrov, “Simulating the Response of SOS CMOS Building Blocks to Pulsed Ionizing Irradiation,” Russ. Microel., vol. 37, no. 1, pp. 25-40, Jan. 2008.
    DOI: 10.1134/S1063739708010046
  6. 6. O.A. Kalashnikov and A.Y. Nikiforov, “TID Behavior of Complex Multifunctional VLSI Devices,” in Proc. 29th Int. Conf. on Microelectronics, Belgrade, Serbia, May 2014, pp. 455-458.
    DOI: 10.1109/MIEL.2014.6842189
  7. 7. D.Boychenko, O. Kalashnikov, A.Yu. Nikiforov, A. Ulanova, D. Bobrovsky and P. Nekrasov, “Total Ionizing Dose Effects and Radiation Testing of Complex Multifunctional VLSI Devices,” Facta Univ./Ser: Electr. Ener., vol. 28, no. 1, pp. 153–164, Mar. 2015.
    DOI: 10.2298/FUEE1501153B
  8. 8. O.A. Kalashnikov, “Statistical Variations of Integrated Circuits Radiation Hardness,” in Proc. 12th Eur. Conf. Rad. Eff. Comp. Sys., Sevilla, Spain, Sep. 19-23, 2011, pp. 661-664.
    DOI: 10.1109/RADECS.2011.6131443
  9. V.V. Belyakov et al., “Methods for the Prediction of Total-Dose Effects on Modern Integrated Semiconductor Devices in Space: A Review,” Russ. Microel., vol. 32, no. 1, pp. 25-39, Jan. 2003.
    DOI: 10.1023/A:1021809802818
  10. A.V. Sogoyan, A.S. Artamonov, A.Y. Nikiforov and D.V. Boychenko. “Method for Integrated Circuits Total Ionizing Dose Hardness Testing Based on Combined Gamma- and Xray- Irradiation Facilities,” Facta Univ./Ser: Electr. Ener., vol. 27, no. 3, pp. 329-338, Sep. 2014.
    DOI: 10.2298/FUEE1403329S
  11. A.I. Chumakov, A.T. Nikiforov, V.A. Telets, V.F. Gerasimov, A.V. Yanenko and A.V. Sogoyan, “IC Space Radiation Effects Experimental Simulation and Estimation Methods,” Rad. Meas., vol. 30,no. 5, pp. 547-552, Oct. 2011.
    DOI: 10.1016/S1350-4487(99)00227-9
  12. B. Jianhui, B. Jinshun, L. Mengxin, and H. Zhengsheng “A Total Dose Radiation Model for Deep Submicron PDSOI NMOS,” J. Semicond., vol. 32, no. 1, pp. 014002 (1-3), Jan. 2011.
    DOI: 10.1088/1674 -4926/32/1/014002
  13. 13. L. Yanfeng et al., “Including the Effects of Process-Related Variability on Radiation Response in Advanced Foundry Process Design Kits,” IEEE Trans. Nucl. Sci., vol. 57, no. 6, pp. 3570-3574, Dec. 2010.
    DOI: 10.1109/TNS.2010.2086478
  14. 14. V. Rusanovschi, M. Rusanovschi and P. Stoicev, “Dependencies of SPICE Level 3 Parameters on Irradiation,” Merid. Inginer., vol. 4, pp. 19‑22, 2013.
  15. 15. Y. Wang et al., “Bias Dependence of Partially-
    Depleted SOI Transistor to Total Dose Irradiation, ”Int. Work. Junct. Techn., Shanghai, China, 2006, pp. 233-235.
    DOI: 10.1109/IWJT.2006.220899
  16. 16. P.K. Skorobogatov and A.Yu. Nikiforov, “Simulation of Bulk Ionization Effects in SOI Devices,” Russ. Microel., vol. 27, no. 1, pp. 1-6, 1998.
  17. 17. A.Yu. Nikiforov et al., “Experimental Studies of the Adequacy of Laser Simulations of Dose Rate Effects in Integrated Circuits and Semiconductor Devices,” Russ. Microel., vol. 38, no. 1, pp. 2-16, Jan. 2009.
    DOI: 10.1134/S1063739709010028
  18. G.I. Zebrev et al., “Radiation response of Bipolar Transistors at Various Irradiation Temperatures and Electric Biases: Modeling and Experiment,” IEEE Trans. on Nucl. Sci., vol. 53, iss. 4, pp. 1981-1987, Aug. 2006.
    DOI: 10.1109/TNS.2006.877851
  19. J.R. Schwank, V.Ferlet-Cavrois, M.R. Shaneyfelt, P. Paillet and P.E. Dodd, "Radiation Effects in SOI Technologies," IEEE Trans. Nucl. Sci., vol. 50, no.3, pp. 522-538, June 2003.
    DOI: 10.1109/TNS.2003.812930
  20. V. Ferlet-Cavrois et al., "Worst-Case Bias during Total Dose Irradiation of SOI Transistors," IEEE Trans. Nucl. Sci., vol. 47, no. 6, pp. 2183-2188, Dec. 2000.
    DOI: 10.1109/23.903751
  21. A.S. Artamonov et al., “REIS-IE' X-Ray Tester: Dеscription, Qualification Technique and Results, Dosimetry Procedure,” in IEEE Rad. Eff. Data Work., Newport Beach (CA), USA, Jul.24, 1998,pp. 164-169.
    DOI: 10.1109/REDW.1998.731498