Volume 2, Issue 3

Original research papers

Radiotherapy

THE COMPARISON OF THE RADIATION LOAD TO THE HEART AND THE LEFT ANTERIOR DESCENDING CORONARY ARTERY FOR VARIOUS MODES OF RADIATION TREATMENT OF THE BREAST CANCER PATIENTS

E. A. Maslyukova, L. I. Korytova, A. V. Bondarenko, O. V. Korytov, E. M. Muravnik

Pages: 214-219

DOI: 10.21175/RadJ.2017.03.043

Received: 7 FEB 2017, Received revised: 19 MAY 2017, Accepted: 20 JUN 2017, Published online: 23 DEC 2017

The aim of this paper is to compare the levels of radiation exposure in three variants of BC (breast cancer) exposure. The study involves dosimetric radiotherapeutic (RT) plans of 20 female patients with left BC. Pre-irradiation preparation included 3 sessions of CT scan: patient in standard dorsal position with tidal respiration (STR), in dorsal position with controlled breathhold on top inspiration (DBH) and in prone position with tidal respiration (PTR). 3D-plan dosimetric calculations were performed for three CT-sessions. Dose-volumetric measures for organs at risk (OAR) were assessed for every irradiation option. Contoured heart volume in all studied variants varied within 477 cm3 - 1056 cm3, mean volume of 769 cm3. The best values, such as V25, average doses per heart and LAD (Left arteria descending) were received using DBH method (V25 heart 4.26%, D mean heart 3.13 Gy, DmeanLAD 13.8 Gy) as compared to STR method (V25 heart 9,49%, D mean heart 4.97Gy, DmeanLAD 19.55Gy) and PTR-position (V25 heart 12,8%, Dmean heart 9.06Gy, DmeanLAD 24.18Gy) (V25 heart P = 0.00153, D mean heart: P =0.000; D mean LAD: P = 0.00088), with the inclusion of Mamma Glandule (MG) and axillary LN in the total volume. The preferences of STR- and DBH-related dosimetric values remained unchanged followed by the inclusion of supraclavicular and infraclavicular lymph nodes (LN) in the total volume. DBH method (V25 heart 3.49%, D mean heart 3.07Gy, DmeanLAD 13.88Gy) was compared to STR method (V25 heart 7.91%, D mean heart 4.99 Gy, DmeanLAD 19.89Gy) (V25 heart P = 0.00205, D mean heart: P =0.004; D mean LAD: P = 0.03). Irradiation in dorsal position was performed with controlled breath hold while full inspiration was associated with a statistically significant decrease of the heart volume, which was exposed to more than 25 Gy (V25heart), average heart dose, average LAD dose.
  1. B. Fisher. et al., “Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer,” N. Engl. J. Med., vol. 347, no. 16, pp. 1233 – 1241, Oct. 2002.
    DOI: 10.1056/NEJMoa022152
    PMid: 12393820.
  2. M. Clarke, R. Collins, S. Darby et al., “Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomized trials,” Lancet, vol. 366, no. 9503, pp. 2087 – 2106, Dec. 2005.
    DOI: 10.1016/S0140-6736(05)67887-7
  3. L. P. Muren et al., “Cardiac and pulmonary doses and complication probabilities in standard and conformal tangential irradiation in conservative management of breast cancer,” Radiother. Oncol., vol. 62, no.2, pp. 173 – 183, Feb. 2002.
    DOI: 10.1016/S0167-8140(01)00468-6
    PMid: 11937244
  4. L. K. Schubert et al., “Dosimetric comparison of left-sided whole breast irradiation with 3DCRT, forward-planned IMRT, inverse-planned IMRT, helical tomotherapy, and topotherapy,” Radiother. Oncol., vol. 100, no.2, pp. 241 – 246, Aug. 2011.
    DOI: 10.1016/j.radonc.2011.01.004
    PMid: 21316783
  5. C. W. Taylor et al., “Cardiac dose from tangential breast cancer radiotherapy in the year 2006,” Int. J. Radiat. Oncol. Biol. Phys., vol. 72, no. 2, pp. 501 – 507, Oct. 2008.
    DOI: 10.1016/j.ijrobp.2007.12.058
    PMid: 18374500
  6. Y. Yin et al., “Dosimetric research on intensity-modulated arc radiotherapy planning for left breast cancer after breast-preservation surgery,” Med. Dosim., vol. 37, no. 3, pp. 287 – 292, 2012.
    DOI: 10.1016/j.meddos.2011.11.001
    PMid: 22284640
  7. C. Ares et al., “Postoperative proton radiotherapy for localized and locoregional breast cancer: potential for clinically relevant improvements?” Int. J. Radiat. Oncol. Biol. Phys., vol. 76, no. 3, pp. 685 – 697, Mar. 2010.
    DOI: 10.1016/j.ijrobp.2009.02.062
    PMid: 19615828
  8. A. J. Hayden et al., “Deep inspiration breath hold technique reduces heart dose from radiotherapy for left-sided breast cancer,” J. Med. Imaging Radiat. Oncol., vol. 56, no. 4, pp. 464 – 472, Aug. 2012.
    DOI: 10.1111/j.1754-9485.2012.02405.x
    PMid: 22883657
  9. S. C. Darby et al., “Risk of ischemic heart disease in women after radiotherapy for breast cancer,” New Engl. J. Med., vol. 368, no. 11, pp. 987 – 998, Mar. 2013.
    DOI: 10.1056/NEJMoa1209825
    PMid: 23484825
  10. S. S. Korreman et al., “Reduction of cardiac and pulmonary complication probabilities after breathing adapted radiotherapy for breast cancer,” Int. J. Radiat. Oncol. Biol. Phys., vol. 65, no. 5, pp. 1375 – 1380, Aug. 2006.
    DOI: 10.1016/j.ijrobp.2006.03.046
    PMid: 16750314
  11. A. M. Kirby et al., “Prone versus supine positioning for whole and partial breast radiotherapy: a comparison of non-target tissue dosimetry,” Radiother. Oncol., vol. 96, no. 2, pp. 178 – 184, Aug. 2010.
    DOI: 10.1016/j.radonc.2010.05.014
    PMid: 20561695
  12. S. C. Lymberis et al., “Prospective assessment of optimal individual position (prone versus supine) for breast radiotherapy: Volumetric and dosimetric correlations in 100 patients,” Int. J. Radiat. Oncol. Biol. Phys., vol. 84, no. 4, pp. 902 – 909, Nov. 2012.
    DOI: 10.1016/j.ijrobp.2012.01.040
    PMid: 22494590
  13. J. P. Chino, L. B. Marks, “Prone positioning causes the heart to be displaced anteriorly within the thorax: implications for breast cancer treatment,” Int. J. Radiat. Oncol. Biol. Phys., vol. 70, no. 3, pp. 916 – 920, Mar. 2008.
    DOI: 10.1016/j.ijrobp.2007.11.001
    PMid:18262103
  14. M. Feng et al., “Development and validation of a heart atlas to study cardiac exposure to radiation following treatment for breast cancer,” Int. J. Radiat. Oncol. Biol. Phys., vol. 79, no. 1, pp. 10 – 18, Jan. 2011.
    DOI: 10.1016/j.ijrobp.2009.10.058
    PMid: 20421148
    PMCid: PMC2937165
  15. J. Buijsen et al. “Prone breast irradiation for pendulous breasts,” Radiother. Oncol., vol. 82, no. 3, pp. 337 – 340, Mar. 2007.
    DOI: 10.1016/j.radonc.2006.08.014
    PMid: 16978722
  16. S. C. Formenti et al., “Prone vs. supine positioning for breast cancer radiotherapy,” JAMA, vol. 308, no. 9, pp. 861 – 863, Sep. 2012.
    DOI: 10.1001/2012.jama.10759
    PMid: 22948692
  17. K. L. Griem et al., “Three-dimensional photon dosimetry: a comparison of treatment of the intact breast in the supine and prone position,” Int. J. Radiat. Oncol. Biol. Phys., vol. 57, no. 3, pp. 891 – 899, Nov. 2003.
    DOI: 10.1016/S0360-3016(03)00723-5
    PMid: 14529796
  18. A. M. Kirby et al., “A randomised trial of supine versus prone breast radiotherapy (SuPr study): comparing set-up errors and respiratory motion,” Radiother. Oncol., vol. 100, no. 2, pp. 221 – 226, Aug. 2011.
    DOI: 10.1016/j.radonc.2010.11.005
    PMid: 21159397
  19. S. S. Korreman et al., “Breathing adapted radiotherapy for breast cancer: comparison of free breathing gating with the breath-hold technique,” Radiother. Oncol., vol. 76, no. 3, pp. 311 – 318, Sep. 2005.
    DOI: 10.1016/j.radonc.2005.07.009
    PMid: 16153728
  20. N. Mason et al., “A prone technique for treatment of the breast supraclavicular and axillary nodes,” J. Med. Imaging Radiat. Oncol., vol. 56, no. 3, pp. 362 – 367, Jun. 2012.
    DOI: 10.1111/j.1754-9485.2012.02389.x
    PMid: 22697337
  21. A. N. Pedersen et al., “Breathing adapted radiotherapy of breast cancer: reduction of cardiac and pulmonary doses using voluntary inspiration breath-hold,” Radiother. Oncol., vol. 72, no. 1, pp. 53 – 60, Jul. 2004.
    DOI: 10.1016/j.radonc.2004.03.012
    PMid: 15236874
  22. L. D. Stegman et al., “Longterm clinical outcomes of whole-breast irradiation delivered in the prone position,” Int. J. Radiat. Oncol. Biol. Phys., vol. 68, no. 1, pp. 73 – 81, May 2007.
    DOI: 10.1016/j.ijrobp.2006.11.054
    PMid: 17337131
  23. K. Verhoeven et. al., “Breathing adapted radiation therapy in comparison with prone position to reduce the doses to the heart, left anterior descending coronary artery, and contralateral breast in whole breast radiation therapy,” Practical Radiation Oncology, vol. 4, no. 2, pp. 123 – 129, Mar-Apr. 2014.
    DOI: 10.1016/j.prro.2013.07.005
    PMid: 24890353
  24. V. M. Remouchamps et al., “Significant reductions in heart and lung doses using deep inspiration breath hold with active breathing control and intensity-modulated radiation therapy for patients treated with locoregional breast irradiation,” Int. J. Radiat. Oncol. Biol. Phys., vol. 55, no. 2, pp. 392 – 406, Feb. 2003.
    DOI: 10.1016/S0360-3016(02)04143-3
    PMid: 12527053
  25. D. Latty et. al., “Review of deep inspiration breath-hold techniques for the treatment of breast cancer,” J. Med. Radiat. Sci., vol. 62, no. 1, pp. 74 – 81, Mar. 2015.
    DOI: 10.1002/jmrs.96
    PMid: 26229670
    PMCid: PMC4364809
  26. J. Vikström et al., “Cardiac and pulmonary dose reduction for tangentially irradiated breast cancer, utilizing deep inspiration breath-hold with audio-visual guidance, without compromising target coverage,” Acta Oncol., vol. 50, no. 1, pp. 42 – 50, 2011.
    DOI: 10.3109/0284186X.2010.512923
    PMid: 20843181